skip to main content


Title: Fossil evidence from South America for the diversification of Cunoniaceae by the earliest Palaeocene
Abstract Background and Aims Cunoniaceae are woody plants with a distribution that suggests a complex history of Gondwanan vicariance, long-distance dispersal, diversification and extinction. Only four out of ~27 genera in Cunoniaceae are native to South America today, but the discovery of extinct species from Argentine Patagonia is providing new information about the history of this family in South America. Methods We describe fossil flowers collected from early Danian (early Palaeocene, ~64 Mya) deposits of the Salamanca Formation. We compare them with similar flowers from extant and extinct species using published literature and herbarium specimens. We used simultaneous analysis of morphology and available chloroplast DNA sequences (trnL–F, rbcL, matK, trnH–psbA) to determine the probable relationship of these fossils to living Cunoniaceae and the co-occurring fossil species Lacinipetalum spectabilum. Key Results Cunoniantha bicarpellata gen. et sp. nov. is the second species of Cunoniaceae to be recognized among the flowers preserved in the Salamanca Formation. Cunoniantha flowers are pentamerous and complete, the anthers contain in situ pollen, and the gynoecium is bicarpellate and syncarpous with two free styles. Phylogenetic analysis indicates that Cunoniantha belongs to crown-group Cunoniaceae among the core Cunoniaceae clade, although it does not have obvious affinity with any tribe. Lacinipetalum spectabilum, also from the Salamanca Formation, belongs to the Cunoniaceae crown group as well, but close to tribe Schizomerieae. Conclusions Our findings highlight the importance of West Gondwana in the evolution of Cunoniaceae during the early Palaeogene. The co-occurrence of C. bicarpellata and L. spectabilum, belonging to different clades within Cunoniaceae, indicates that the diversification of crown-group Cunoniaceae was under way by 64 Mya.  more » « less
Award ID(s):
1925552 1925755
NSF-PAR ID:
10227141
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Annals of Botany
Volume:
127
Issue:
3
ISSN:
0305-7364
Page Range / eLocation ID:
305 to 315
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background

    The Chloranthaceae comprise four extant genera (Hedyosmum, Ascarina, Chloranthus and Sarcandra), all with simple flowers. Molecular phylogenetics indicates that the Chloranthaceae diverged very early in angiosperm evolution, although how they are related to eudicots, magnoliids, monocots and Ceratophyllum is uncertain. Fossil pollen similar to that of Ascarina and Hedyosmum has long been recognized in the Early Cretaceous, but over the last four decades evidence of extinct Chloranthaceae based on other types of fossils has expanded dramatically and contributes significantly to understanding the evolution of the family.

    Scope

    Studies of fossils from the Cretaceous, especially mesofossils of Early Cretaceous age from Portugal and eastern North America, recognized diverse flowers, fruits, seeds, staminate inflorescences and stamens of extinct chloranthoids. These early chloranthoids include forms related to extant Hedyosmum and also to the Ascarina, Chloranthus and Sarcandra clade. In the Late Cretaceous there are several occurrences of distinctive fossil androecia related to extant Chloranthus. The rich and still expanding Cretaceous record of Chloranthaceae contrasts with a very sparse Cenozoic record, emphasizing that the four extant genera are likely to be relictual, although speciation within the genera might have occurred in relatively recent times. In this study, we describe three new genera of Early Cretaceous chloranthoids and summarize current knowledge on the extinct diversity of the group.

    Conclusions

    The evolutionary lineage that includes extant Chloranthaceae is diverse and abundantly represented in Early Cretaceous mesofossil floras that provide some of the earliest evidence of angiosperm reproductive structures. Extinct chloranthoids, some of which are clearly in the Chloranthaceae crown group, fill some of the morphological gaps that currently separate the extant genera, help to illuminate how some of the unusual features of extant Chloranthaceae evolved and suggest that Chloranthaceae are of disproportionate importance for a more refined understanding of ecology and phylogeny of early angiosperm diversification.

     
    more » « less
  2. Premise

    Solanaceae is a scientifically and economically important angiosperm family with a minimal fossil record and an intriguing early evolutionary history. Here, we report a newly discovered fossil lantern fruit with a suite of features characteristic of Physalideae within Solanaceae. The fossil comes from the early Eocene Laguna del Hunco site (ca. 52 Ma) in Chubut, Argentina, which previously yielded the only other physaloid fruit fossil,Physalis infinemundi.

    Methods

    The fruit morphology and calyx venation pattern of the new fossil were compared withP. infinemundiand extant species of Solanaceae.

    Results

    Physalis hunickeniisp. nov. is clearly distinct fromP. infinemundiin its fruiting calyx with wider primary veins, longer and thinner lobes, and especially in its venation pattern with high density, transverse tertiary veins; these features support its placement in a new species. In comparison with extant physaloid genera, the calyx venation pattern and other diagnostic traits reinforce placement of the new fossil, likeP. infinemundi, within the tribe Physalideae of Solanaceae.

    Conclusions

    Both species of fossil nightshades from Laguna del Hunco represent crown‐group Solanaceae but are older than all prior age estimates of the family. Although at least 20 transoceanic dispersals have been proposed as the driver of range expansion of Solanaceae, the Patagonian fossils push back the diversification of the family to Gondwanan times. Thus, overland dispersal across Gondwana is now a likely scenario for at least some biogeographic patterns, in light of the ancient trans‐Antarctic land connections between South America and Australia.

     
    more » « less
  3. Abstract

    The genusBidens(Compositae) comprisesc. 230 species distributed across five continents, with the 41 Polynesian species displaying the greatest ecomorphological variation in the group. However, the genus has had a long and complicated taxonomic history, and its phylogenetic and biogeographic history are poorly understood. To resolve the evolutionary history of the PolynesianBidens, 152 individuals representing 91 species were included in this study, including 39 of the 41 described species from Polynesia. Four chloroplast and two nuclear DNA markers were utilized to estimate phylogenetic relationships, divergence times, and biogeographic history.Bidenswas found to be polyphyletic withinCoreopsis, consistent with previous assessments. The Polynesian radiation was resolved as monophyletic, with the initial dispersal into the Pacific possibly from South America to either the Hawaiian or Marquesas Islands. From the Marquesas,Bidensdispersed to the Society Islands, and ultimately to the Austral Islands. The initial diversification of the crown group in the Pacific is estimated to have occurred ~1.63 mya (0.74–2.72, 95% HPD), making PolynesianBidensamong the youngest and most rapid plant diversification events documented in the Pacific. Our findings suggest that relatively rare long‐distance dispersal and founder‐event speciation, coupled with subsequent loss of dispersal potential and within‐island speciation, can explain the repeated and explosive adaptive radiation ofBidensthroughout the archipelagoes of Polynesia.

     
    more » « less
  4. Abstract Aim

    We investigate the biogeographical history and diversification in a treefrog lineage distributed in contrasting (open and forested) ecoregions of South America, including three biodiversity hotspots. We evaluate the role of dispersal and whether other factors such as diversity‐dependence or paleotemperatures could explain the diversification pattern for this group. Especially focusing on the savanna endemics, we illuminate the processes governing the species assembly and evolution of the Cerrado savanna.

    Location

    South American ecoregions south of the Amazon (i.e. Atlantic Forest, Cerrado, Araucaria Forest, Pampas, Central and Southern Andes).

    Taxon

    Boana pulchellagroup.

    Methods

    We built the most complete time‐calibrated phylogeny for the group to date. We then reconstructed ancestral ranges using the dispersal‐extinction‐cladogenesis (DEC) model comparing different dispersal scenarios considering distance, adjacency and ecological similarity among regions. Centre‐of‐origin hypotheses in forest and open ecoregions were also tested. Using biogeographical stochastic mapping, we additionally estimated the contribution of range shifts across different biomes. Lastly, we evaluated several diversification models, including the effect of time, diversity‐dependence and temperature‐dependence on speciation and extinction rates.

    Results

    TheBoana pulchellagroup originated during the Early Miocene (~17.5 MYA) and underwent high speciation rates during the Middle Miocene Climatic Optimum, with a decreasing trend following the Miocene Climatic Transition. We found no support for a single ecoregion acting as a centre of origin and diversification; instead, we inferred recurrent range shifts with dispersal among dissimilar adjacent ecoregions. Speciation linearly dependent on paleotemperatures, with either no or very low constant extinction rates, best explained the slowdown diversification pattern.

    Main conclusions

    Our results support a species assembly of Cerrado savanna in South America during the Miocene with intermittent interchange with rain forest habitats. Past climate changes impacted the rate new species originated with apparently no impact on extinction. Finally, the repeated habitat shifts among open/dry and forested/humid ecoregions, rather than long‐term in‐situ diversification in single areas, highlights the very dynamic historical interchange between contrasting habitats in South America, possibly contributing to its high species diversity.

     
    more » « less
  5. The highest species richness and ecological diversity of extant snakes are in the tropics, primarily in South Asia and Central and South America. Tropical Africa has relatively lower richness and less diversity, but the evolution of tropical herpetofaunas, and the factors governing diversification through time at continental scales are poorly understood due to an understudied fossil record. The ecologies and geographic distributions of aniliid and uropeltoid snakes are examples. Modern species constitute either a grade or clade of fossorial, primarily wet forest taxa from South America and South Asia. Their distributions have historically been interpreted as Gondwanan vicariance following the isolation of Africa in the Early Cretaceous, but a definitive fossil record for these snakes is depauperate. Field research in the early Miocene (approx. 19 Mya) Tinderet sequence of western Kenya has produced precloacal vertebrae of an aniliid snake from multiple localities. Specimens possess vertebral apomorphies shared with extant South American Anilius scytale, including the morphology of the neural spine and prezygapophyseal angle. Combined with additional fossils from the Eocene of North Africa, the Tinderet records demonstrate an unambiguous past record of an extant neotropical snake lineage in Africa and falsify previous vicariance hypotheses. Recent stable isotopic and palynological studies of Neogene eastern African fossil localities have indicated heterogenous environments, including C4 grasses and wood- to scrubland, associated with vertebrate faunas. Comparing climate parameters of habitats for extant Anilius and uropeltoid snakes as ecological analogues to the Tinderet snake with modern ecosystems equivalent to those reconstructed for the eastern African early Miocene demonstrates only limited overlap in precipitation and temperature values. This discord indicates either greater environmental heterogeneity than reconstructed for the early Miocene of eastern Africa, or a greater range of habitat variability in aniliid snakes than observed in extant Anilius. 
    more » « less