skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fossil evidence from South America for the diversification of Cunoniaceae by the earliest Palaeocene
Abstract Background and Aims Cunoniaceae are woody plants with a distribution that suggests a complex history of Gondwanan vicariance, long-distance dispersal, diversification and extinction. Only four out of ~27 genera in Cunoniaceae are native to South America today, but the discovery of extinct species from Argentine Patagonia is providing new information about the history of this family in South America. Methods We describe fossil flowers collected from early Danian (early Palaeocene, ~64 Mya) deposits of the Salamanca Formation. We compare them with similar flowers from extant and extinct species using published literature and herbarium specimens. We used simultaneous analysis of morphology and available chloroplast DNA sequences (trnL–F, rbcL, matK, trnH–psbA) to determine the probable relationship of these fossils to living Cunoniaceae and the co-occurring fossil species Lacinipetalum spectabilum. Key Results Cunoniantha bicarpellata gen. et sp. nov. is the second species of Cunoniaceae to be recognized among the flowers preserved in the Salamanca Formation. Cunoniantha flowers are pentamerous and complete, the anthers contain in situ pollen, and the gynoecium is bicarpellate and syncarpous with two free styles. Phylogenetic analysis indicates that Cunoniantha belongs to crown-group Cunoniaceae among the core Cunoniaceae clade, although it does not have obvious affinity with any tribe. Lacinipetalum spectabilum, also from the Salamanca Formation, belongs to the Cunoniaceae crown group as well, but close to tribe Schizomerieae. Conclusions Our findings highlight the importance of West Gondwana in the evolution of Cunoniaceae during the early Palaeogene. The co-occurrence of C. bicarpellata and L. spectabilum, belonging to different clades within Cunoniaceae, indicates that the diversification of crown-group Cunoniaceae was under way by 64 Mya.  more » « less
Award ID(s):
1925552 1925755 1556666
PAR ID:
10227141
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Annals of Botany
Volume:
127
Issue:
3
ISSN:
0305-7364
Page Range / eLocation ID:
305 to 315
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. PremiseSolanaceae is a scientifically and economically important angiosperm family with a minimal fossil record and an intriguing early evolutionary history. Here, we report a newly discovered fossil lantern fruit with a suite of features characteristic of Physalideae within Solanaceae. The fossil comes from the early Eocene Laguna del Hunco site (ca. 52 Ma) in Chubut, Argentina, which previously yielded the only other physaloid fruit fossil,Physalis infinemundi. MethodsThe fruit morphology and calyx venation pattern of the new fossil were compared withP. infinemundiand extant species of Solanaceae. ResultsPhysalis hunickeniisp. nov. is clearly distinct fromP. infinemundiin its fruiting calyx with wider primary veins, longer and thinner lobes, and especially in its venation pattern with high density, transverse tertiary veins; these features support its placement in a new species. In comparison with extant physaloid genera, the calyx venation pattern and other diagnostic traits reinforce placement of the new fossil, likeP. infinemundi, within the tribe Physalideae of Solanaceae. ConclusionsBoth species of fossil nightshades from Laguna del Hunco represent crown‐group Solanaceae but are older than all prior age estimates of the family. Although at least 20 transoceanic dispersals have been proposed as the driver of range expansion of Solanaceae, the Patagonian fossils push back the diversification of the family to Gondwanan times. Thus, overland dispersal across Gondwana is now a likely scenario for at least some biogeographic patterns, in light of the ancient trans‐Antarctic land connections between South America and Australia. 
    more » « less
  2. The highest species richness and ecological diversity of extant snakes are in the tropics, primarily in South Asia and Central and South America. Tropical Africa has relatively lower richness and less diversity, but the evolution of tropical herpetofaunas, and the factors governing diversification through time at continental scales are poorly understood due to an understudied fossil record. The ecologies and geographic distributions of aniliid and uropeltoid snakes are examples. Modern species constitute either a grade or clade of fossorial, primarily wet forest taxa from South America and South Asia. Their distributions have historically been interpreted as Gondwanan vicariance following the isolation of Africa in the Early Cretaceous, but a definitive fossil record for these snakes is depauperate. Field research in the early Miocene (approx. 19 Mya) Tinderet sequence of western Kenya has produced precloacal vertebrae of an aniliid snake from multiple localities. Specimens possess vertebral apomorphies shared with extant South American Anilius scytale, including the morphology of the neural spine and prezygapophyseal angle. Combined with additional fossils from the Eocene of North Africa and Middle Miocene of Kenya, the Tinderet records demonstrate an unambiguous past record of an extant neotropical snake lineage in Africa and falsify previous vicariance hypotheses. Recent stable isotopic and palynological studies of Neogene eastern African fossil localities have indicated heterogenous environments, including C4 grasses and wood- to scrubland, associated with vertebrate faunas. Comparing climate parameters of habitats for extant Anilius and uropeltoid snakes as ecological analogues to the Tinderet snake with modern ecosystems equivalent to those reconstructed for the eastern African early Miocene demonstrates only limited overlap in precipitation and temperature values. This discord indicates either greater environmental heterogeneity than reconstructed for the early Miocene of eastern Africa, or a greater range of habitat variability in aniliid snakes than observed in extant Anilius. 
    more » « less
  3. The highest species richness and ecological diversity of extant snakes are in the tropics, primarily in South Asia and Central and South America. Tropical Africa has relatively lower richness and less diversity, but the evolution of tropical herpetofaunas, and the factors governing diversification through time at continental scales are poorly understood due to an understudied fossil record. The ecologies and geographic distributions of aniliid and uropeltoid snakes are examples. Modern species constitute either a grade or clade of fossorial, primarily wet forest taxa from South America and South Asia. Their distributions have historically been interpreted as Gondwanan vicariance following the isolation of Africa in the Early Cretaceous, but a definitive fossil record for these snakes is depauperate. Field research in the early Miocene (approx. 19 Mya) Tinderet sequence of western Kenya has produced precloacal vertebrae of an aniliid snake from multiple localities. Specimens possess vertebral apomorphies shared with extant South American Anilius scytale, including the morphology of the neural spine and prezygapophyseal angle. Combined with additional fossils from the Eocene of North Africa, the Tinderet records demonstrate an unambiguous past record of an extant neotropical snake lineage in Africa and falsify previous vicariance hypotheses. Recent stable isotopic and palynological studies of Neogene eastern African fossil localities have indicated heterogenous environments, including C4 grasses and wood- to scrubland, associated with vertebrate faunas. Comparing climate parameters of habitats for extant Anilius and uropeltoid snakes as ecological analogues to the Tinderet snake with modern ecosystems equivalent to those reconstructed for the eastern African early Miocene demonstrates only limited overlap in precipitation and temperature values. This discord indicates either greater environmental heterogeneity than reconstructed for the early Miocene of eastern Africa, or a greater range of habitat variability in aniliid snakes than observed in extant Anilius. 
    more » « less
  4. Abstract The genusTauschiahas long been a source of taxonomic consternation for researchers. The group of species currently included in this genus are distributed primarily across the western United States and Mexico, but a few species occur in Central America and northern South America. Its circumscription is highly problematic, and its species have been moved countless times between more than a dozen genera. The advent of molecular phylogenetics has allowed some testing of generic boundaries inTauschiaand related taxa, but the sampling of previous studies was limited to a few species representing too small of a range to sort out the confusion. Here, we expand the sample size to include plants from throughout the range of the genus and use this to examine relationships among species ofTauschia, as well as to the larger clades to which it belongs within tribe Selineae. We also detail the complex taxonomic history ofTauschiaand related genera, provide a complete synonymy of the genus as it is currently defined, and confirm the polyphyly ofTauschiavia phylogenetic analysis of nuclear and cpDNA sequences. 
    more » « less
  5. Summary Fossil discoveries can transform our understanding of plant diversification over time and space. Recently described fossils in many plant families have pushed their known records farther back in time, pointing to alternative scenarios for their origin and spread.Here, we describe two new Eocene fossil berries of the nightshade family (Solanaceae) from the Esmeraldas Formation in Colombia and the Green River Formation in Colorado (USA). The placement of the fossils was assessed using clustering and parsimony analyses based on 10 discrete and five continuous characters, which were also scored in 291 extant taxa.The Colombian fossil grouped with members of the tomatillo subtribe, and the Coloradan fossil aligned with the chili pepper tribe. Along with two previously reported early Eocene fossils from the tomatillo genus, these findings indicate that Solanaceae were distributed at least from southern South America to northwestern North America by the early Eocene.Together with two other recently discovered Eocene berries, these fossils demonstrate that the diverse berry clade and, in turn, the entire nightshade family, is much older and was much more widespread in the past than previously thought. 
    more » « less