skip to main content


Title: A perturbation solution to the full Poisson–Nernst–Planck equations yields an asymmetric rectified electric field
We derive a perturbation solution to the one-dimensional Poisson–Nernst–Planck (PNP) equations between parallel electrodes under oscillatory polarization for arbitrary ionic mobilities and valences. Treating the applied potential as the perturbation parameter, we show that the second-order solution yields a nonzero time-average electric field at large distances from the electrodes, corroborating the recent discovery of Asymmetric Rectified Electric Fields (AREFs) via numerical solution to the full nonlinear PNP equations [Hashemi Amrei et al. , Phys. Rev. Lett. , 2018, 121 , 185504]. Importantly, the first-order solution is analytic, while the second-order AREF is semi-analytic and obtained by numerically solving a single linear ordinary differential equation, obviating the need for full numerical solutions to the PNP equations. We demonstrate that at sufficiently high frequencies and electrode spacings the semi-analytical AREF accurately captures both the complicated shape and the magnitude of the AREF, even at large applied potentials.  more » « less
Award ID(s):
1664679
NSF-PAR ID:
10227210
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Soft Matter
Volume:
16
Issue:
30
ISSN:
1744-683X
Page Range / eLocation ID:
7052 to 7062
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. After a theory of morphogenesis in chemical cells was introduced in the 1950s, much attention had been devoted to the numerical solution of reaction-diffusion (RD) partial differential equations (PDEs). The Crank–Nicolson (CN) method has been a common second-order time-stepping procedure. However, the CN method may introduce spurious oscillations for nonsmooth data unless the time step size is sufficiently small. This article studies a nonoscillatory second-order time-stepping procedure for RD equations, called a variable- θ method , as a perturbation of the CN method. In each time level, the new method detects points of potential oscillations to implicitly resolve the solution there. The proposed time-stepping procedure is nonoscillatory and of a second-order temporal accuracy. Various examples are given to show effectiveness of the method. The article also performs a sensitivity analysis for the numerical solution of biological pattern forming models to conclude that the numerical solution is much more sensitive to the spatial mesh resolution than the temporal one. As the spatial resolution becomes higher for an improved accuracy, the CN method may produce spurious oscillations, while the proposed method results in stable solutions. 
    more » « less
  2. null (Ed.)
    In this paper we propose and analyze a finite difference numerical scheme for the Poisson-Nernst-Planck equation (PNP) system. To understand the energy structure of the PNP model, we make use of the Energetic Variational Approach (EnVarA), so that the PNP system could be reformulated as a non-constant mobility H − 1 H^{-1} gradient flow, with singular logarithmic energy potentials involved. To ensure the unique solvability and energy stability, the mobility function is explicitly treated, while both the logarithmic and the electric potential diffusion terms are treated implicitly, due to the convex nature of these two energy functional parts. The positivity-preserving property for both concentrations, n n and p p , is established at a theoretical level. This is based on the subtle fact that the singular nature of the logarithmic term around the value of 0 0 prevents the numerical solution reaching the singular value, so that the numerical scheme is always well-defined. In addition, an optimal rate convergence analysis is provided in this work, in which many highly non-standard estimates have to be involved, due to the nonlinear parabolic coefficients. The higher order asymptotic expansion (up to third order temporal accuracy and fourth order spatial accuracy), the rough error estimate (to establish the ℓ ∞ \ell ^\infty bound for n n and p p ), and the refined error estimate have to be carried out to accomplish such a convergence result. In our knowledge, this work will be the first to combine the following three theoretical properties for a numerical scheme for the PNP system: (i) unique solvability and positivity, (ii) energy stability, and (iii) optimal rate convergence. A few numerical results are also presented in this article, which demonstrates the robustness of the proposed numerical scheme. 
    more » « less
  3. In this paper, we design and analyze second order positive and free energy satisfying schemes for solving diffusion equations with interaction potentials. The semi-discrete scheme is shown to conserve mass, preserve solution positivity, and satisfy a discrete free energy dissipation law for nonuniform meshes. These properties for the fully-discrete scheme (first order in time) remain preserved without a strict restriction on time steps. For the fully second order (in both time and space) scheme, we use a local scaling limiter to restore solution positivity when necessary. It is proved that such limiter does not destroy the second order accuracy. In addition, these schemes are easy to implement, and efficient in simulations over long time. Both one and two dimensional numerical examples are presented to demonstrate the performance of these schemes. 
    more » « less
  4. In this paper, we propose a new spatial temperature aware transient EM induced stress analysis method. The new method consists of two new contributions: First, we propose a new TM-aware void saturation volume estimation method for fast immortality check in the post-voiding phase for the first time. We derive the analytic formula to estimate the void saturation in the presence of spatial temperature gradients due to Joule heating. Second, we developed a fast numerical solution for EM-induced stress analysis for multi-segment interconnect trees considering TM effect. The new method first transforms the coupled EM-TM partial differential equations into linear time-invariant ordinary differential equations (ODEs). Then extended Krylov subspace-based reduction technique is employed to reduce the size of the original system matrices so that they can be efficiently simulated in the time domain. The proposed method can perform the simulation process for both void nucleation and void growth phases under time-varying input currents and position-dependent temperatures. The numerical results show that, compared to the recently proposed semi-analytic EM-TM method, the proposed method can lead to about 28x speedup on average for the interconnect with up to 1000 branches for both void nucleation and growth phases with negligible errors. 
    more » « less
  5. When applying an oscillatory electric potential to an electrolyte solution, it is commonly assumed that the choice of which electrode is grounded or powered does not matter because the time average of the electric potential is zero. Recent theoretical, numerical, and experimental work, however, has established that certain types of multimodal oscillatory potentials that are “nonantiperiodic” can induce a net steady field toward either the grounded or powered electrode [A. Hashemi et al., Phys. Rev. E 105, 065001 (2022)]. Here, we elaborate on the nature of these steady fields through numerical and theoretical analyses of the asymmetric rectified electric field (AREF). We demonstrate that AREFs induced by a nonantiperiodic electric potential, e.g., by a two-mode waveform with modes at 2 and 3Hz, invariably yields a steady field that is spatially dissymmetric between two parallel electrodes, such that swapping which electrode is powered changes the direction of the field. Furthermore, we show that, while the single-mode AREF occurs in asymmetric electrolytes, nonantiperiodic electric potentials create a steady field in electrolytes even if the cations and anions have the same mobilities. Additionally, using a perturbation expansion, we demonstrate that the dissymmetric AREF occurs due to odd nonlinear orders of the applied potential. We further generalize the theory by demonstrating that the dissymmetric field occurs for all classes of zero-time-average (no dc bias) periodic potentials, including triangular and rectangular pulses, and we discuss how these steady fields can tremendously change the interpretation, design, and applications of electrochemical and electrokinetic systems. 
    more » « less