skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multiple solutions and their asymptotics for laminar flows through a porous channel with different permeabilities
Abstract The existence and multiplicity of similarity solutions for the steady, incompressible and fully developed laminar flows in a uniformly porous channel with two permeable walls are investigated. We shall focus on the so-called asymmetric case where the upper wall is with an amount of flow injection and the lower wall with a different amount of suction. The numerical results suggest that there exist three solutions designated as type $$I$$, type $II$ and type $III$ for the asymmetric case, type $$I$$ solution exists for all non-negative Reynolds number and types $II$ and $III$ solutions appear simultaneously at a common Reynolds number that depends on the value of asymmetric parameter $$a$$ and with the increase of $$a$$ the common Reynolds numbers are decreasing. We also theoretically show that there exist three solutions. The corresponding asymptotic solution for each of the multiple solutions is constructed by the method of boundary layer correction or matched asymptotic expansion for the most difficult high Reynolds number case. These asymptotic solutions are all verified by their corresponding numerical solutions.  more » « less
Award ID(s):
1901914
PAR ID:
10227494
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IMA Journal of Applied Mathematics
Volume:
85
Issue:
2
ISSN:
0272-4960
Page Range / eLocation ID:
280 to 308
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The asymptotic behaviour of Reynolds stresses close to walls is well established in incompressible flows owing to the constraint imposed by the solenoidal nature of the velocity field. For compressible flows, thus, one may expect a different asymptotic behaviour, which has indeed been noted in the literature. However, the transition from incompressible to compressible scaling, as well as the limiting behaviour for the latter, is largely unknown. Thus, we investigate the effects of compressibility on the near-wall, asymptotic behaviour of turbulent fluxes using a large direct numerical simulation (DNS) database of turbulent channel flow at higher than usual wall-normal resolutions. We vary the Mach number at a constant friction Reynolds number to directly assess compressibility effects. We observe that the near-wall asymptotic behaviour for compressible turbulent flow is different from the corresponding incompressible flow even if the mean density variations are taken into account and semi-local scalings are used. For Mach numbers near the incompressible regimes, the near-wall asymptotic behaviour follows the well-known theoretical behaviour. When the Mach number is increased, turbulent fluxes containing wall-normal components show a decrease in the slope owing to increased dilatation effects. We observe that $$R_{vv}$$ approaches its high-Mach-number asymptote at a lower Mach number than that required for the other fluxes. We also introduce a transition distance from the wall at which turbulent fluxes exhibit a change in scaling exponents. Implications for wall models are briefly presented. 
    more » « less
  2. The margination and adhesion of micro-particles (MPs) have been extensively investigated separately, due to their important applications in the biomedical field. However, the cascade process from margination to adhesion should play an important role in the transport of MPs in blood flow. To the best of our knowledge, this has not been explored in the past. Here we numerically study the margination behaviour of elastic MPs to blood vessel walls under the interplay of their deformability and adhesion to the vessel wall. We use the lattice Boltzmann method and molecular dynamics to solve the fluid dynamics and particle dynamics (including red blood cells (RBCs) and elastic MPs) in blood flow, respectively. Additionally, a stochastic ligand–receptor binding model is employed to capture the adhesion behaviours of elastic MPs on the vessel wall. Margination probability is used to quantify the localization of elastic MPs at the wall. Two dimensionless numbers are considered to govern the whole process: the capillary number $Ca$ , denoting the ratio of viscous force of fluid flow to elastic interfacial force of MP, and the adhesion number $Ad$ , representing the ratio of adhesion strength to viscous force of fluid flow. We systematically vary them numerically and a margination probability contour is obtained. We find that there exist two optimal regimes favouring high margination probability on the plane $$Ca{-}Ad$$ . The first regime, namely region I, is that with high adhesion strength and moderate particle stiffness; the other one, region II, has moderate adhesion strength and large particle stiffness. We conclude that the existence of optimal regimes is governed by the interplay of particle deformability and adhesion strength. The corresponding underlying mechanism is also discussed in detail. There are three major factors that contribute to the localization of MPs: (i) near-wall hydrodynamic collision between RBCs and MPs; (ii) deformation-induced migration due to the presence of the wall; and (iii) adhesive interaction between MPs and the wall. Mechanisms (i) and (iii) promote margination, while (ii) hampers margination. These three factors perform different roles and compete against each other when MPs are located in different regions of the flow channel, i.e. near-wall region. In optimal region I, adhesion outperforms deformation-induced migration; and in region II, the deformation-induced migration is small compared to the coupling of near-wall hydrodynamic collision and adhesion. The finding of optimal regimes can help the understanding of localization of elastic MPs at the wall under the adhesion effect in blood flow. More importantly, our results suggest that softer MP or stronger adhesion is not always the best choice for the localization of MPs. 
    more » « less
  3. Drag for wall-bounded flows is directly related to the spatial flux of spanwise vorticity outward from the wall. In turbulent flows a key contribution to this wall-normal flux arises from nonlinear advection and stretching of vorticity, interpretable as a cascade. We study this process using numerical simulation data of turbulent channel flow at friction Reynolds number$$Re_\tau =1000$$. The net transfer from the wall of spanwise vorticity created by downstream pressure drop is due to two large opposing fluxes, one which is ‘down-gradient’ or outward from the wall, where most vorticity concentrates, and the other which is ‘up-gradient’ or toward the wall and acting against strong viscous diffusion in the near-wall region. We present evidence that the up-gradient/down-gradient transport occurs by a mechanism of correlated inflow/outflow and spanwise vortex stretching/contraction that was proposed by Lighthill. This mechanism is essentially Lagrangian, but we explicate its relation to the Eulerian anti-symmetric vorticity flux tensor. As evidence for the mechanism, we study (i) statistical correlations of the wall-normal velocity and of wall-normal flux of spanwise vorticity, (ii) vorticity flux cospectra identifying eddies involved in nonlinear vorticity transport in the two opposing directions and (iii) visualizations of coherent vortex structures which contribute to the transport. The ‘D-type’ vortices contributing to down-gradient transport in the log layer are found to be attached, hairpin-type vortices. However, the ‘U-type’ vortices contributing to up-gradient transport are detached, wall-parallel, pancake-shaped vortices with strong spanwise vorticity, as expected by Lighthill's mechanism. We discuss modifications to the attached eddy model and implications for turbulent drag reduction. 
    more » « less
  4. The crystal structures of three β-halolactic acids have been determined, namely, β-chlorolactic acid (systematic name: 3-chloro-2-hydroxypropanoic acid, C 3 H 5 ClO 3 ) (I), β-bromolactic acid (systematic name: 3-bromo-2-hydroxypropanoic acid, C 3 H 5 BrO 3 ) (II), and β-iodolactic acid (systematic name: 2-hydroxy-3-iodopropanoic acid, C 3 H 5 IO 3 ) (III). The number of molecules in the asymmetric unit of each crystal structure ( Z ′) was found to be two for I and II, and one for III, making I and II isostructural and III unique. The difference between the molecules in the asymmetric units of I and II is due to the direction of the hydrogen bond of the alcohol group to a neighboring molecule. Molecular packing shows that each structure has alternating layers of intermolecular hydrogen bonding and halogen–halogen interactions. Hirshfeld surfaces and two-dimensional fingerprint plots were analyzed to further explore the intermolecular interactions of these structures. In I and II, energy minimization is achieved by lowering of the symmetry to adopt two independent molecular conformations in the asymmetric unit. 
    more » « less
  5. Throughout 2021, GitGuardian’s monitoring of public GitHub repositories revealed a two-fold increase in the number of secrets (database credentials, API keys, and other credentials) exposed compared to 2020, accumulating more than six million secrets. To our knowledge, the challenges developers face to avoid checked-in secrets are not yet characterized. The goal of our paper is to aid researchers and tool developers in understanding and prioritizing opportunities for future research and tool automation for mitigating checked-in secrets through an empirical investigation of challenges and solutions related to checked-in secrets. We extract 779 questions related to checkedin secrets on Stack Exchange and apply qualitative analysis to determine the challenges and the solutions posed by others for each of the challenges. We identify 27 challenges and 13 solutions. The four most common challenges, in ranked order, are: (i) store/version of secrets during deployment; (ii) store/version of secrets in source code; (iii) ignore/hide of secrets in source code; and (iv) sanitize VCS history. The three most common solutions, in ranked order, are: (i) move secrets out of source code/version control and use template config file; (ii) secret management in deployment; and (iii) use local environment variables. Our findings indicate that the same solution has been mentioned to mitigate multiple challenges. However, our findings also identify an increasing trend in questions lacking accepted solutions substantiating the need for future research and tool automation on managing secrets. 
    more » « less