skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Electron transport in a sequentially doped naphthalene diimide polymer
The effects of sequential n-doping on a high-electron-mobility naphthalene-diimide-based copolymer poly[( N , N ′-bis(2-decyltetradecyl)-naphthalene-1,8:4,5-bis(dicarboximide)-2,6-diyl)-(selenophene-2,5-diyl)-(benzo[ c ][1,2,5]thiadiazole-4,7-diyl)-(selenophene-2,5-diyl)], PNBS, are reported. Grazing-incidence XRD measurements show that PNBS doped with 2,2′-bis(4-(dimethylamino)phenyl)-1,1′,3,3′-tetramethyl-2,2′,3,3′-tetrahydro-1 H ,1′ H -2,2′-bibenzo[ d ]imidazole, (N-DMBI) 2 , has increased order relative to both the pristine polymer and a film doped with ruthenium pentamethylcyclopentadienyl mesitylene dimer. Films of PNBS optimally doped with (N-DMBI) 2 show electrical conductivities approaching 2 mS cm −1 in air. Temperature-dependent electrical measurements suggest that the polaronic charge carriers are highly localized, which is consistent with the moderate conductivity values obtained.  more » « less
Award ID(s):
1807797 1729737
PAR ID:
10227505
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Materials Advances
Volume:
1
Issue:
6
ISSN:
2633-5409
Page Range / eLocation ID:
1829 to 1834
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Semiconducting mesocrystalline bulk polymer specimens that exhibit near‐intrinsic properties using channel‐die pressing are demonstrated. A predominant edge‐on orientation is obtained for poly(3‐hexylthiophene‐2,5‐diyl) (P3HT) throughout 2 mm‐thick/wide samples. This persistent mesocrystalline arrangement at macroscopic scales allows reliable evaluation of the electronic charge‐transport anisotropy along all three crystallographic axes, with high mobilities found along the π‐stacking. Indeed, charge‐carrier mobilities of up to 2.3 cm2V−1s−1are measured along the π‐stack, which are some of the highest mobilities reported for polymers at low charge‐carrier densities (drop‐cast films display mobilities of maximum ≈10−3cm2V−1s−1). The structural coherence also leads to an unusually well‐defined photoluminescence line‐shape characteristic of an H‐aggregate (measured from the surface perpendicular to the materials flow), rather than the typical HJ‐aggregate feature usually found for P3HT. The approach is widely applicable: to electrical conductors and materials used in n‐type devices, such as poly{[N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene)} (N2200) where the mesocrystalline structure leads to high electron transport along the polymer backbones (≈1.3 cm2V−1s−1). This versatility and the broad applicability of channel‐die pressing signifies its promise as a straightforward, readily scalable method to fabricate bulk semiconducting polymer structures at macroscopic scales with properties typically accessible only by the tedious growth of single crystals. 
    more » « less
  2. We present a series of new dopants based on a bicyclcic guanidine-type structure, 1,5,7-triazabicyclo[4.4.0]dec-5-ene ( TBD ), for organic semiconductors. A series of TBD derivatives that were alkylated at the 7-position were synthesized and their physical properties were determined. These stable dopants were shown to be effective n-type dopants for [6,6]-phenyl- C 61 -butyric acid methyl ester (PC 61 BM), poly{[ N , N ′-bis(2-octyldodecyl)naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]- alt -5,5′-(2,2′-bithiophene)} (P(NDI2OD-T2)) and 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3- d :2′,3′- d ′]- s -indaceno[1,2- b :5,6- b ′]dithiophene (ITIC). Films of PC 61 BM doped with 10 mol% of a dimeric derivative of TBD had electrical conductivities of 0.065 S cm −1 . The utility of the dopants was further shown by doping electron transport layers of PC 61 BM with 2TBD-C10 for methyl ammonium lead iodide (MAPbI 3 ) solar cells leading to improved fill factors and PCEs relative to undoped ETLs. 
    more » « less
  3. Abstract Achieving high electrical conductivity and thermoelectric power factor simultaneously for n‐type organic thermoelectrics is still challenging. By constructing two new acceptor‐acceptor n‐type conjugated polymers with different backbones and introducing the 3,4,5‐trimethoxyphenyl group to form the new n‐type dopant 1,3‐dimethyl‐2‐(3,4,5‐trimethoxyphenyl)‐2,3‐dihydro‐1H‐benzo[d]imidazole (TP‐DMBI), high electrical conductivity of 11 S cm−1and power factor of 32 μW m−1 K−2are achieved. Calculations using Density Functional Theory show that TP‐DMBI presents a higher singly occupied molecular orbital (SOMO) energy level of −1.94 eV than that of the common dopant 4‐(1, 3‐dimethyl‐2, 3‐dihydro‐1H‐benzoimidazol‐2‐yl) phenyl) dimethylamine (N‐DMBI) (−2.36 eV), which can result in a larger offset between the SOMO of dopant and lowest unoccupied molecular orbital (LUMO) of n‐type polymers, though that effect may not be dominant in the present work. The doped polymer films exhibit higher Seebeck coefficient and power factor than films using N‐DMBI at the same doping levels or similar electrical conductivity levels. Moreover, TP‐DMBI doped polymer films offer much higher electron mobility of up to 0.53 cm2 V−1 s−1than films with N‐DMBI doping, demonstrating the potential of TP‐DMBI, and 3,4,5‐trialkoxy DMBIs more broadly, for high performance n‐type organic thermoelectrics. 
    more » « less
  4. A new sterically bulky chelating bis(alkoxide) ligand 3,3′-([1,1′:4′,1′′-terphenyl]-2,2′′-diyl)bis(2,2,4,4-tetramethylpentan-3-ol), (H 2 [OO] tBu ), was prepared in a two-step process as the dichloromethane monosolvate, C 36 H 50 O 2 ·CH 2 Cl 2 . The first step is a Suzuki–Miyaura coupling reaction between 2-bromophenylboronic acid and 1,4-diiodobenzene. The resulting 2,2′′-dibromo-1,1′:4′,1′′-terphenyl was reacted with t BuLi and hexamethylacetone to obtain the desired product. The crystal structure of H 2 [OO] tBu revealed an anti conformation of the [CPh 2 (OH)] fragments relative to the central phenyl. Furthermore, the hydroxyl groups point away from each other. Likely because of this anti – anti conformation, the attempts to synthesize first-row transition-metal complexes with H 2 [OO] tBu were not successful. 
    more » « less
  5. Abstract Doping the electron‐transport polymer poly{[N,N′‐bis(2‐octyldodecyl)naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene)} [P(NDI2OD‐T2)] with the bulky, strongly reducing metallocene 1,2,3,4,1′,2′,3′,4′‐octaphenylrhodocene (OPR) leads to an increased bulk conductivity and a decreased contact resistance. While the former arises from low‐level n‐doping of the intrinsic polymer and increased carrier mobility due to trap‐filling, the latter arises from a pronounced accumulation of dopant molecules at an indium tin oxide (ITO) substrate. Electron transfer from OPR to ITO leads to a work function reduction, which pins the Fermi level at the P(NDI2OD‐T2) conduction band and thus minimizes the electron injection barrier and the contact resistance. The results demonstrate that disentangling the effects of electrode modification by the dopant and bulk doping is essential to comprehensively understand doped organic semiconductors. 
    more » « less