skip to main content

This content will become publicly available on December 1, 2022

Title: Short-term interaction between silent and devastating earthquakes in Mexico
Abstract Either the triggering of large earthquakes on a fault hosting aseismic slip or the triggering of slow slip events (SSE) by passing seismic waves involve seismological questions with important hazard implications. Just a few observations plausibly suggest that such interactions actually happen in nature. In this study we show that three recent devastating earthquakes in Mexico are likely related to SSEs, describing a cascade of events interacting with each other on a regional scale via quasi-static and/or dynamic perturbations across the states of Guerrero and Oaxaca. Such interaction seems to be conditioned by the transient memory of Earth materials subject to the “traumatic” stress produced by seismic waves of the great 2017 (Mw8.2) Tehuantepec earthquake, which strongly disturbed the SSE cycles over a 650 km long segment of the subduction plate interface. Our results imply that seismic hazard in large populated areas is a short-term evolving function of seismotectonic processes that are often observable.
Authors:
; ; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
1654416
Publication Date:
NSF-PAR ID:
10227748
Journal Name:
Nature Communications
Volume:
12
Issue:
1
ISSN:
2041-1723
Sponsoring Org:
National Science Foundation
More Like this
  1. Tsunami generation from earthquake-induced seafloor deformations has long been recognized as a major hazard to coastal areas. Strike-slip faulting has generally been considered insufficient for triggering large tsunamis, except through the generation of submarine landslides. Herein, we demonstrate that ground motions due to strike-slip earthquakes can contribute to the generation of large tsunamis (>1 m), under rather generic conditions. To this end, we developed a computational framework that integrates models for earthquake rupture dynamics with models of tsunami generation and propagation. The three-dimensional time-dependent vertical and horizontal ground motions from spontaneous dynamic rupture models are used to drive boundary motionsmore »in the tsunami model. Our results suggest that supershear ruptures propagating along strike-slip faults, traversing narrow and shallow bays, are prime candidates for tsunami generation. We show that dynamic focusing and the large horizontal displacements, characteristic of strike-slip earthquakes on long faults, are critical drivers for the tsunami hazard. These findings point to intrinsic mechanisms for sizable tsunami generation by strike-slip faulting, which do not require complex seismic sources, landslides, or complicated bathymetry. Furthermore, our model identifies three distinct phases in the tsunamic motion, an instantaneous dynamic phase, a lagging coseismic phase, and a postseismic phase, each of which may affect coastal areas differently. We conclude that near-source tsunami hazards and risk from strike-slip faulting need to be re-evaluated.

    « less
  2. Abstract Recent studies have shown that the Antarctic cryosphere is sensitive to external disturbances such as tidal stresses or dynamic stresses from remote large earthquakes. In this study, we systematically examine evidence of remotely triggered microseismicity around Mount (Mt.) Erebus, an active high elevation stratovolcano located on Ross Island, Antarctica. We detect microearthquakes recorded by multiple stations from the Mt. Erebus Volcano Observatory Seismic Network one day before and after 43 large teleseismic earthquakes, and find that seven large earthquakes (including the 2010 Mw 8.8 Maule, Chile, and 2012 Mw 8.6 Indian Ocean events) triggered local seismicity on the volcano, with mostmore »triggered events occurring during the passage of the shorter-period Rayleigh waves. In addition, their waveforms and locations for the triggered events are different when comparing with seismic events arising from the persistent small-scale eruptions, but similar to other detected events before and after the mainshocks. Based on the waveform characteristics and their locations, we infer that these triggered events are likely shallow icequakes triggered by dilatational stress perturbations from teleseismic surface waves. We show that teleseismic earthquakes with higher peak dynamic stress changes are more capable of triggering icequakes at Mt. Erebus. We also find that the icequakes in this study are more likely to be triggered during the austral summer months. Our study motivates the continued monitoring of Mount Erebus with dense seismic instrumentation to better understand interactions between dynamic seismic triggering, crospheric processes, and volcanic activity.« less
  3. Predicting the onset and timing of fault failure is one of the ultimate goals of seismology. However, our current understanding of the earthquake preparation and nucleation process is limited. One direction towards understanding this process is looking at precursory signals preceding large earthquakes. Previous laboratory experiments have studied robust precursory signals, observed as temporal changes in pressure and shear wave velocities during the seismic cycle. The effects of such precursory velocity changes on the seismic cycle are not well understood. We use numerical models to simulate fully-dynamic earthquake cycles in 2D strike-slip fault systems with antiplane geometry, surrounded by amore »narrow fault-parallel damage zone. By imposing shear wave velocity changes inside fault damage zones, we investigate the effects of these precursors on multiple stages of the seismic cycle, including nucleation, coseismic, postseismic, and interseismic stages. Our modeling results show a wide spectrum of fault-slip behaviors including fast earthquakes, slow-slip events, and variable creep. One primary effect of the imposed velocity precursor is the facilitation of the otherwise slow-slip event to grow into a fully dynamic earthquake. Furthermore, the onset time of these precursors have significant effects on the nucleation phase of the earthquakes, and earlier onset of precursors causes the earthquakes to nucleate earlier with a smaller nucleation size. Our results highlight the importance of short and long-term monitoring of fault zone structures for better assessment of regional seismic hazard.« less
  4. ABSTRACT The July 2019 Ridgecrest, California, earthquake sequence involved two large events—the M 6.4 foreshock and the M 7.1 mainshock that ruptured a system of intersecting strike-slip faults. We present analysis of space geodetic observations including Synthetic Aperture Radar and Global Navigation Satellite System data, geological field mapping, and seismicity to constrain the subsurface rupture geometry and slip distribution. The data render a complex pattern of faulting with a number of subparallel as well as cross-cutting fault strands that exhibit variations in both strike and dip angles, including a “flower structure” formed by shallow splay faults. Slip inversions are performed using bothmore »homogeneous and layered elastic half-space models informed by the local seismic tomography data. The inferred slip distribution suggests a moderate amount of the shallow coseismic slip deficit. The peak moment release occurred in the depth interval of 3–4 km, consistent with results from previous studies of major strike-slip earthquakes, and the depth distribution of seismicity in California. We use the derived slip models to investigate stress transfer and possible triggering relationships between the M 7.1 mainshock and the M 6.4 foreshock, as well as other moderate events that occurred in the vicinity of the M 7.1 hypocenter. Triggering is discouraged for the average strike of the M 7.1 rupture (320°) but encouraged for the initial orientation of the mainshock rupture suggested by the first-motion data (340°). This lends support to a scenario according to which the earthquake rupture nucleated on a small fault that was more optimally oriented with respect to the regional stress and subsequently propagated along the less-favorably oriented pre-existing faults, possibly facilitated by dynamic weakening. The nucleation site of the mainshock experienced positive dynamic Coulomb stress changes that are much larger than the static stress changes, yet the former failed to initiate rupture.« less
  5. Short historical and even shorter instrumental records limit our perspective of earthquake maximum magnitude and recurrence, and thus are inadequate to fully characterize Earth’s complex and multiscale seismic behavior and its consequences. Examining prehistoric events preserved in the geological record is essential to reconstruct the long-term history of earthquakes and to deliver observational data that help to reduce uncertainties in seismic hazard assessment for long return periods. Motivated by the mission to fill the gap in long-term records of giant (Mw 9 class) earthquakes such as the Tohoku-Oki earthquake in 2011, International Ocean Discovery Program (IODP) Expedition 386, Japan Trenchmore »Paleoseismology, was designed to test and further develop submarine paleoseismology in the Japan Trench. Earthquake rupture propagation to the trench and sediment remobilization related to the 2011 Mw 9.0 Tohoku-Oki earthquake, and the respective structures and deposits are preserved in trench basins formed by flexural bending of the subducting Pacific Plate. These basins are ideal study areas for testing event deposits for earthquake triggering as they have poorly connected sediment transport pathways from the shelf and experience high sedimentation rates and low benthos activity (and thus high preservation potential) in the ultra-deep water hadal environment. Results from conventional coring covering the last ~1,500 y reveal good agreement between the sedimentary record and historical documents. Subbottom profile data are consistent with basin-fill successions of episodic muddy turbidite deposition and thus define clear targets for paleoseismologic investigations on longer timescales accessible only by deeper coring. In 2021, IODP Expedition 386 successfully collected 29 Giant Piston cores at 15 sites (1 to 3 holes each; total core recovery 831 meters), recovering 20 to 40-meter-long, continuous, upper Pleistocene to Holocene stratigraphic successions of 11 individual trench-fill basins along an axis parallel transect from 36°N – 40.4°N, at water depth between 7445-8023 m below sea level. The cores are currently being examined by multi-method applications to characterize and date event deposits for which the detailed stratigraphic expressions and spatiotemporal distribution will be analyzed for proxy evidence of giant versus smaller earthquakes versus other driving mechanisms. Initial preliminary results presented in this EGU presentation reveal event-stratigraphic successions comprising several 10s of potentially giant-earthquake related event beds, revealing a fascinating record that will unravel the earthquake history of the different along-strike segments, that is 10–100 times longer than currently available information. The data set will enable a statistically robust assessment of the recurrence patterns of giant earthquakes as input for improved probabilistic seismic hazard assessment and advanced understanding of earthquake induced geohazards globally. IODP Expedition 386 Science Party: Piero Bellanova; Morgane Brunet; Zhirong Cai; Antonio Cattaneo; Tae Soo Chang; Kanhsi Hsiung; Takashi Ishizawa; Takuya Itaki; Kana Jitsuno; Joel Johnson; Toshiya Kanamatsu; Myra Keep; Arata Kioka; Christian Maerz; Cecilia McHugh; Aaron Micallef; Luo Min; Dhananjai Pandey; Jean Noel Proust; Troy Rasbury; Natascha Riedinger; Rui Bao; Yasufumi Satoguchi; Derek Sawyer; Chloe Seibert; Maxwell Silver; Susanne Straub; Joonas Virtasalo; Yonghong Wang; Ting-Wei Wu; Sarah Zellers« less