The electrospinning of hydrocortisone/cyclodextrin complex nanofibers was performed in order to develop a fast-dissolving oral drug delivery system. Hydrocortisone is a water-insoluble hydrophobic drug, yet, the water solubility of hydrocortisone was significantly enhanced by inclusion complexation with hydroxypropyl-beta-cyclodextrin (HP-β-CyD). In this study, hydrocortisone/HP-β-CyD complexes were prepared in aqueous solutions having molar ratios of 1/1, 1/1.5 and 1/2 (hydrocortisone/HP-β-CyD). Highly concentrated aqueous solutions of HP-β-CyD (180%, w/v) were used for hydrocortisone/HP-β-CyD systems (1/1, 1/1.5 and 1/2) in order to perform electrospinning without the use of an additional polymer matrix. The turbidity of hydrocortisone/HP-β-CyD (1/1 and 1/1.5) aqueous solutions indicated the presence of some uncomplexed crystals of hydrocortisone whereas the aqueous solution of hydrocortisone/HP-β-CyD (1/2) was homogeneous indicating that hydrocortisone becomes totally water-soluble by inclusion complexation with HP-β-CyD. Nonetheless, the electrospinning of hydrocortisone/HP-β-CyD systems (1/1, 1/1.5 and 1/2) successfully yielded defect-free uniform nanofibrous structures. Moreover, the electrospinning process was quite efficient that hydrocortisone was completely preserved without any loss yielding hydrocortisone/HP-β-CyD nanofibers having the initial molar ratios (1/1, 1/1.5 and 1/2). The structural and thermal characterization of the hydrocortisone/HP-β-CyD nanofibers revealed that hydrocortisone was totally inclusion complexed with HP-β-CyD and was in the amorphous state in hydrocortisone/HP-β-CyD (1/2) nanofibers whereas some uncomplexed crystalline hydrocortisone was present in hydrocortisone/HP-β-CyD (1/1 and 1/1.5) nanofibers. Nevertheless, hydrocortisone/HP-β-CyD (1/1, 1/1.5 and 1/2) complex aqueous systems were electrospun in the form of nanofibrous webs having a free-standing and flexible nature. The hydrocortisone/HP-β-CyD (1/1, 1/1.5 and 1/2) nanofibrous webs have shown fast-dissolving behavior in water or when they were in contact with artificial saliva. Yet, the hydrocortisone/HP-β-CyD (1/2) nanofibrous web dissolved more quickly than the hydrocortisone/HP-β-CyD (1/1 and 1/1.5) nanofibrous webs due to the full inclusion complexation and the amorphous state of hydrocortisone in this sample. In short, the results suggest that polymer-free electrospun nanofibrous webs produced from hydrocortisone/HP-β-CyD could be quite applicable for fast-dissolving oral drug delivery systems.
more »
« less
Design of polymer-free Vitamin-A acetate/cyclodextrin nanofibrous webs: antioxidant and fast-dissolving properties
The encapsulation of food/dietary supplements into electrospun cyclodextrin (CD) inclusion complex nanofibers paves the way for developing novel carrying and delivery substances along with orally fast-dissolving properties. In this study, CD inclusion complex nanofibers of Vitamin-A acetate were fabricated from polymer-free aqueous systems by using the electrospinning technique. The hydroxypropylated (HP) CD derivatives of HPβCD and HPγCD were used for both encapsulation of Vitamin-A acetate and the electrospinning of free-standing nanofibrous webs. The ultimate Vitamin-A acetate/CD nanofibrous webs (NWs) were obtained with a loading capacity of 5% (w/w). The amorphous distribution of Vitamin-A acetate in the nanofibrous webs by inclusion complexation and the unique properties of nanofibers ( e.g. high surface area and porosity) ensured the fast disintegration and fast dissolution/release of Vitamin-A acetate/CD-NW in a saliva simulation and aqueous medium. The enhanced solubility of Vitamin-A acetate in the case of Vitamin-A acetate/CD-NW also ensured an improved antioxidant property for the Vitamin-A acetate compound. Moreover, Vitamin-A acetate thermally degraded at higher temperature in Vitamin-A acetate/CD-NWs, suggesting the enhanced thermal stability of this active compound. Here, HPβCD formed inclusion complexes in a more favorable way when compared to HPγCD. Therefore, there were some uncomplexed Vitamin-A acetate crystals detected in Vitamin-A acetate/HPγCD-NW, while Vitamin-A acetate molecules loaded in Vitamin-A acetate/HPβCD-NW were completely in complexed and amorphous states. Depending on this, better solubilizing effect, higher release amount and enhanced antioxidant properties have been provided for the Vitamin-A acetate compound in the case of Vitamin-A acetate/HPβCD-NW.
more »
« less
- Award ID(s):
- 1719875
- PAR ID:
- 10227950
- Date Published:
- Journal Name:
- Food & Function
- Volume:
- 11
- Issue:
- 9
- ISSN:
- 2042-6496
- Page Range / eLocation ID:
- 7626 to 7637
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Co-axial electrospinning is an efficient technique to develop core-shell or hollow nanofibrous structures. In this study electrospun carbon nanofibers with three different morphologies, i.e. solid nanofibers with porous structure (P-ECNF), hollow nanofibers with solid wall (H-ECNF), and hollow nanofibers with porous wall (HP-ECNF) were developed through bicomponent electrospinning and co-axial electrospinning of polyacrylonitrile (PAN) and poly (methyl methacrylate) (PMMA) by varying proportion of the sacrificial PMMA. Through comparative electrochemical analyses, it is revealed that the primary factors for electrochemical performance, i.e. specific capacitance, of the electrospun carbon nanofibrous materials are mesopore volume and total pore volume. The hollow structure as well as ordered carbon structure and intact fiber structure also benefits electrolyte transfer and subsequent electrochemical performance but is secondary. Overall the porous carbon nanofibrous electrode material from electrospinning PAN/PMMA (50/50) solution (P-ECNF-50-50) outperformed those hollow and hollow-porous counterparts from co-axial electrospinning and demonstrated the largest specific capacitance due to the largest mesopore volume as well as the largest total pore volume. This electrode material also showed excellent cycling stability (without any loss of specific capacitance) after 3,000 cycles of charging and discharging. It even showed some increase of specific capacitance with cycling test due to its relatively large amount of micropores.more » « less
-
Abstract Nanofibers made by blending natural and synthetic biopolymers have shown promise for better mechanical stability, ECM morphology mimicry, and cellular interaction of such materials. With the evolution of production methods of nanofibers, alternating field electrospinning (a.k.a. alternating current (AC) electrospinning) demonstrates a strong potential for scalable and sustainable fabrication of nanofibrous materials. This study focuses on AC‐electrospinning of poorly miscible blends of gelatin from cold water fish skin (FGEL) and polycaprolactone (PCL) in a range of FGEL/PCL mass ratios from 0.9:0.1 to 0.4:0.6 in acetic acid single‐solvent system. The nanofiber productivity rates of 7.8–19.0 g/h were obtained using a single 25 mm diameter dish‐like spinneret, depending on the precursor composition. The resulting nanofibrous meshes had 94%–96% porosity and revealed the nanofibers with 200–750 nm diameters and smooth surface morphology. The results of FTIR, XRD, and water contact angle analyses have shown the effect of FGEL/PCL mass ratio on the changes in the material wettability, PCL crystallinity and orientation of PCL crystalline regions, and secondary structure of FGEL in as‐spun and thermally crosslinked materials. Preliminary in vitro tests with 3 T3 mouse fibroblasts confirmed favorable and tunable cell attachment, proliferation, and spreading on all tested FGEL/PCL nanofibrous meshes.more » « less
-
Blended nanofibrous biomaterials from natural and synthetic sources show promise for better biointegration. This study explores high-yield alternating field electrospinning (AFES) of blended cold-water fish skin gelatin (FGEL) and polycaprolactone (PCL) nanofibrous meshes with up to 30 wt% PCL at 7.8–14.4 g/h fiber productivity, depending on the composition. FGEL/PCL nanofibers reveal smooth surface morphology and 237–313 nm average diameters after thermal crosslinking. FTIR analysis indicated little FGEL/PCL interaction and notable changes in PCL crystallinity in the crosslinked nanofibers. A 14-days in-vitro analysis shows good cellular viability and nanofibrous FGEL/PCL mesh stability. Results demonstrate that AFES provides efficient, scalable production of blended FGEL/PCL nanofibrous biomaterials with suitable characteristics.more » « less
An official website of the United States government

