skip to main content


Title: Economic Viability Assessment of Repurposed EV Batteries Participating in Frequency Regulation and Energy Markets
The high cost and growing environmental concerns surrounding lithium-ion batteries have motivated research into extending the life of electric vehicle(EV) batteries by repurposing them for second life grid applications. The incorporation of repurposed electric vehicle batteries (REVBs) has the potential to decrease the overall cost of new battery energy storage systems (BESS) and extend the useful life of the materials. This paper focuses on maximizing daily profit that can be made from REVBs by stacking two grid services such as frequency regulation and energy arbitrage while minimizing battery capital cost by using second life EV batteries. A model for battery management with stacked frequency regulation and energy arbitrage is developed and tested using PJM market data. A mixed integer linear programming (MILP) is used to solve the optimization problem. It is found that REVBs can generate higher net profits than a new BESS.  more » « less
Award ID(s):
1659882
NSF-PAR ID:
10229913
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2021 IEEE Green Technologies Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Power conversion is a significant cost in second-use battery energy storage systems (2-BESS). 2-BESS is a sustainable pathway for retired batteries of electrical vehicles (EV) to provide energy storage for the grid and EV fast charging. We present and demonstrate the optimization of Lite-Sparse Hierarchical Partial Power Processing (LS-HiPPP) for battery degradation over the potential lifetime of the 2-BESS. LS-HiPPP has a significantly better performance tradeoff with lower power processing than other partial and full power processing architectures. 
    more » « less
  2. null (Ed.)
    Wireless Charging Highways (WCHs) have been introduced by industry and academia to enable charging-while-driving for electric vehicles (EVs) and to combat range anxiety. While detailed planning and performance evaluation of such systems are crucial due to high cost and long life expectancy, most existing works assume a perfect communication environment. In this paper, we introduce a joint capacity model that takes into account both power and communication resources for WCH construction planning, and optimal day-to-day operation. The vehicle-to-infrastructure (V2I) communication and grid power capacities, along with the EV’s average service rate are formulated following technology requirements, EV speed-density characteristics, and the EV’s energy needs and consumption. In addition, a two-dimension Markov chain-based model is designed to capture the WCH power and connectivity dynamics. The proposed model can be used to calculate the system’s Quality of Service (QoS) and profit, provide design insights, and assess the impact of speed regulation, or admission control on the WCH lane. Finally, the performance of the proposed model is evaluated using real US highway data with the results demonstrating its ability to accurately capture the service provision dynamics, and to identify trade-offs between system parameters. 
    more » « less
  3. This paper proposes a methodology to increase the lifetime of the central battery energy storage system (CBESS) in an islanded building-level DC microgrid (MG) and enhance the voltage quality of the system by employing the supercapacitor (SC) of electric vehicles (EVs) that utilize battery-SC hybrid energy storage systems. To this end, an adaptive filtration-based (FB) current-sharing strategy is proposed in the voltage feedback control loop of the MG that smooths the CBESS current to increase its lifetime by allocating a portion of the high-frequency current variations to the EV charger. The bandwidth of this filter is adjusted using a data-driven algorithm to guarantee that only the EV's SC absorbs the high-frequency current variations, thereby enabling the EV's battery energy storage system (BESS) to follow its standard constant current-constant voltage (CC-CV) charging profile. Therefore, the EV's SC can coordinate with the CBESS without impacting the charging profile of the EV's BESS. Also, a small-signal stability analysis is provided indicating that the proposed approach improves the marginal voltage stability of the DC MG leading to better transient response and higher voltage quality. Finally, the performance of the proposed EV charging is validated using MATLAB/Simulink and hardware-in-the-loop (HIL) testing. 
    more » « less
  4. null (Ed.)
    This paper presents one of the first real-life demonstrations of coordinated and distributed resource control for secondary frequency response in a power distribution grid. A series of tests involved up to 69 heterogeneous active distributed energy resources consisting of air handling units, unidirectional and bidirectional electric vehicle charging stations, a battery energy storage system, and 107 passive distributed energy resources consisting of building loads and solar photovoltaic systems. The distributed control setup consists of a set of Raspberry Pi end-points exchanging messages via an ethernet switch. Actuation commands for the distributed energy resources are obtained by solving a power allocation problem at every regulation instant using distributed ratio-consensus, primal-dual, and Newton-like algorithms. The problem formulation minimizes the sum of distributed energy resource costs while tracking the aggregate setpoint provided by the system operator. We demonstrate accurate and fast real-time distributed computation of the optimization solution and effective tracking of the regulation signal over 40 min time horizons. An economic benefit analysis confirms eligibility to participate in an ancillary services market and demonstrates up to $53k of potential annual revenue for the selected population of distributed energy resources. 
    more » « less
  5. Electric vehicles (EVs) are spreading rapidly in the market due to their better responsiveness and environmental friendliness. An accurate diagnosis of EV battery status from operational data is necessary to ensure reliability, minimize maintenance costs, and improve sustainability. This paper presents a deep learning approach based on the long short-term memory network (LSTM) to estimate the state of health (SOH) and degradation of lithium-ion batteries for electric vehicles without prior knowledge of the complex degradation mechanisms. Our results are demonstrated on the open-source NASA Randomized Battery Usage Dataset with batteries aging under changing operating conditions. The randomized discharge data can better represent practical battery usage. The study provides additional end-of-use suggestions, including continued use, remanufacturing/repurposing, recycling, and disposal; for battery management dependent on the predicted battery status. The suggested replacement point is proposed to avoid a sharp degradation phase of the battery to prevent a significant loss of active material on the electrodes. This facilitates the remanufacturing/repurposing process for the replaced battery, thereby extending the battery's life for secondary use at a lower cost. The prediction model provides a tool for customers and the battery second use industry to handle their EV battery properly to get the best economy and system reliability compromise. 
    more » « less