skip to main content


Title: Toward a microscopic model of light absorbing dissolved organic compounds in aqueous environments: theoretical and experimental study
Water systems often contain complex macromolecular systems that absorb light. In marine environments, these light absorbing components are often at the air–water interface and can participate in the chemistry of the atmosphere in ways that are poorly understood. Understanding the photochemistry and photophysics of these systems represents a major challenge since their composition and structures are not unique. In this study, we present a successful microscopic model of this light absorbing macromolecular species termed “marine derived chromophoric dissolved organic matter” or “m-CDOM” in water. The approach taken involves molecular dynamics simulations in the ground state using on the fly Density Functional Tight-Binding (DFTB) electronic structure theory; Time Dependent DFTB (TD-DFTB) calculations of excited states, and experimental measurements of the optical absorption spectra in aqueous solution. The theoretical hydrated model shows key features seen in the experimental data for a collected m-CDOM sample. As will be discussed, insights from the model are: (i) the low-energy A-band (at 410 nm) is due to the carbon chains combined with the diol- and the oxy-groups present in the structure; (ii) the weak B-band (at 320–360 nm) appears due to the contribution of the ionized speciated form of m-CDOM; and (iii) the higher-energy C-band (at 280 nm) is due to the two fused ring system. Thus, this is a two-speciated formed model. Although a relatively simple system, these calculations represent an important step in understanding light absorbing compounds found in nature and the search for other microscopic models of related materials remains of major interest.  more » « less
Award ID(s):
1801971
NSF-PAR ID:
10232185
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Volume:
23
Issue:
17
ISSN:
1463-9076
Page Range / eLocation ID:
10487 to 10497
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Marine chromophoric dissolved organic matter (m-CDOM) mediates many vital photochemical processes at the ocean's surface. Isolating m-CDOM within the chemical complexity of marine dissolved organic matter has remained an analytical challenge. The SeaSCAPE campaign, a large-scale mesocosm experiment, provided a unique opportunity to probe the in situ production of m-CDOM across phytoplankton and microbial blooms. Results from mass spectrometry coupled with UV-VIS spectroscopy reveal production of a chemodiverse set of compounds well-correlated with increases in absorbance after a bacterial bloom, indicative of autochthonous m-CDOM production. Notably, many of the absorbing compounds were found to be enriched in nitrogen, which may be essential to chromophore function. From these results, quinoids, porphyrins, flavones, and amide-like compounds were identified via structural analysis and may serve as important photosensitizers in the marine boundary layer. Overall, this study demonstrates a step forward in identifying and characterizing m-CDOM using temporal mesocosm data and integrated UV-VIS spectroscopy and mass spectrometry analyses. 
    more » « less
  2. Abstract

    Chromophoric dissolved organic matter (CDOM) is an important part of ocean carbon biogeochemistry with relevance to long‐term observations of ocean biology due to its dominant light absorption properties. Thus, understanding the underlying processes controlling CDOM distribution is important for predicting changes in light availability, primary production, and the cycling of biogeochemically important matter. We present a biogeochemical CDOM model for the open ocean with two classes of biological lability and uncertainty estimates derived from 43 ensemble members that provide a range of model parameter variations. Ensemble members were optimized to match global ocean in situ CDOM measurements and independently assessed against satellite CDOM estimates, which showed good agreement in spatial patterns. Based on the ensemble median, we estimate that about 7% of open‐ocean CDOM is of terrestrial origin, but the ensemble range is large (<0.1–26%). CDOM is rapidly removed in the surface ocean (<200 m) due to biological degradation for short‐lived CDOM and photodegradation for long‐lived CDOM, leading to a net flux of CDOM to the surface ocean from the dark ocean. This deep‐water source (ensemble median 0.001 m−1 yr−1) is similar in magnitude to the riverine flux (0.005 m−1 yr−1) into the surface ocean. Though discrepancies between the model and observational data remain, this work serves as a foundational framework for a mechanistic assessment of global CDOM distribution that is independent of satellite data.

     
    more » « less
  3. Metadynamics calculations of large chemical systems with ab initio methods are computationally prohibitive due to the extensive sampling required to simulate the large degrees of freedom in these systems. To address this computational bottleneck, we utilized a GPU-enhanced density functional tight binding (DFTB) approach on a massively parallelized cloud computing platform to efficiently calculate the thermodynamics and metadynamics of biochemical systems. To first validate our approach, we calculated the free-energy surfaces of alanine dipeptide and showed that our GPU-enhanced DFTB calculations qualitatively agree with computationally-intensive hybrid DFT benchmarks, whereas classical force fields give significant errors. Most importantly, we show that our GPU-accelerated DFTB calculations are significantly faster than previous approaches by up to two orders of magnitude. To further extend our GPU-enhanced DFTB approach, we also carried out a 10 ns metadynamics simulation of remdesivir, which is prohibitively out of reach for routine DFT-based metadynamics calculations. We find that the free-energy surfaces of remdesivir obtained from DFTB and classical force fields differ significantly, where the latter overestimates the internal energy contribution of high free-energy states. Taken together, our benchmark tests, analyses, and extensions to large biochemical systems highlight the use of GPU-enhanced DFTB simulations for efficiently predicting the free-energy surfaces/thermodynamics of large biochemical systems. 
    more » « less
  4. Arctic landscapes are warming and becoming wetter due to changes in precipitation and the timing of snowmelt which consequently alters seasonal runoff and river discharge patterns. These changes in hydrology lead to increased mobilization and transport of terrestrial dissolved organic matter (DOM) to Arctic coastal seas where significant impacts on biogeochemical cycling can occur. Here, we present measurements of dissolved organic carbon (DOC) and chromophoric DOM (CDOM) in the Yukon River-to-Bering Sea system and two river plumes on the Alaska North Slope which flow into the Beaufort Sea. Our sampling characterized optical and biogeochemical properties of DOM during high and low river discharge periods for the Yukon River-Bering Sea system. The average DOC concentration at the multiple Yukon River mouths ranged from a high of 10.36 mg C L -1 during the ascending limb of the 2019 freshet (late May), 6.4 mg C L -1 during the descending limb of the 2019 freshet (late June), and a low of 3.86 mg C L -1 during low river discharge in August 2018. CDOM absorption coefficient at 412 nm ( a CDOM (412)) averaged 8.23 m -1 , 5.07 m -1 , and 1.9 m -1 , respectively. Several approaches to model DOC concentration based on its relationship with CDOM properties demonstrated cross-system seasonal and spatial robustness for these Arctic coastal systems despite spanning an order of magnitude decrease in DOC concentration from the lower Yukon River to the Northern Bering Sea as well as the North Slope systems. “Snapshot” fluxes of DOC and CDOM across the Yukon River Delta to Norton Sound were calculated from our measurements and modeled water fluxes forced with upstream USGS river gauge data. Our findings suggest that during high river flow, DOM reaches the delta largely unaltered by inputs or physical and biogeochemical processing and that the transformations of Yukon River DOM largely occur in the plume. However, during low summer discharge, multiple processes including local precipitation events, microbial decomposition, photochemistry, and likely others can alter the DOM properties within the lower Yukon River and Delta prior to flowing into Norton Sound. 
    more » « less
  5. The light-absorption properties of brown carbon (BrC) are often estimated using offline, solvent-extraction methods. However, recent studies have found evidence of insoluble BrC species that are unaccounted for in solvent extraction. In this work, we produced carbonaceous aerosol particles from the combustion of three biomass fuels (pine needles, hickory twigs, and oak foliage). We utilized a combination of online and offline measurements and optical calculations to estimate the mass fractions and contribution to light absorption by methanol-soluble BrC (MSBrC), methanol-insoluble BrC (MIBrC), and elemental carbon (EC). Averaged over all experiments, the majority of the carbonaceous aerosol species were attributed to MSBrC (90% ± 5%), while MIBrC and EC constituted 9% ± 5% and 1% ± 0.5%, respectively. The BrC produced in all experiments was moderately absorbing, with an imaginary component of the refractive index ( k ) at 532 nm ranging between 0.01 and 0.05. However, the k values at 532 nm of the MSBrC (0.004 ± 0.002) and MIBrC (0.211 ± 0.113) fractions were separated by two orders of magnitude, with MSBrC categorized as weakly absorbing BrC and MIBrC as strongly absorbing BrC. Consequently, even though MSBrC constituted the majority of the aerosol mass, MIBrC had a dominant contribution to light absorption at 532 nm (72% ± 11%). The findings presented in this paper provide support for previous reports of the existence of strongly absorbing, methanol-insoluble BrC species and indicate that relying on methanol extraction to characterize BrC in biomass-burning emissions would severely underestimate its absorption. 
    more » « less