Deep Brain Stimulation (DBS) surgeries are not new, although they were only granted approval in the U.S. by the U.S. Food and Drug Administration (FDA) in 2002 for advanced Parkinson’s Disease (PD). In 2016, DBS surgery was approved for earlier stages of PD. This does not mean that DBS surgery, generally considered minimally invasive, does not come without commensurate risks. The Mayo Clinic identifies DBS as a serious and potential risky procedure, whereby those eligible must carefully weigh pros and cons. The aim of this paper is to provide a general overview of deep brain stimulation surgery and to present the findings of available informational resources on 14 hospital and medical center web sites that were reviewed, pertaining to surgical procedures and policies: pre-operative to post-operative. The article focuses on critiquing available educational DBS materials and their adequacy in addressing potential risks of DBS surgery. The findings indicate that hospital informational resources on the DBS surgical technique reaffirm each other’s educational materials and that they positively inform patient decision-making. These factors can be linked to better post-operative recovery. However, the materials provided by the hospitals overemphasize the positive aspects of DBS with relatively little detail about potential side effects. Thismore »
Robotics and AI for Teleoperation, Tele-Assessment, and Tele-Training for Surgery in the Era of COVID-19: Existing Challenges, and Future Vision
The unprecedented shock caused by the COVID-19 pandemic has severely influenced the delivery of regular healthcare services. Most non-urgent medical activities, including elective surgeries, have been paused to mitigate the risk of infection and to dedicate medical resources to managing the pandemic. In this regard, not only surgeries are substantially influenced, but also pre- and post-operative assessment of patients and training for surgical procedures have been significantly impacted due to the pandemic. Many countries are planning a phased reopening, which includes the resumption of some surgical procedures. However, it is not clear how the reopening safe-practice guidelines will impact the quality of healthcare delivery. This perspective article evaluates the use of robotics and AI in 1) robotics-assisted surgery, 2) tele-examination of patients for pre- and post-surgery, and 3) tele-training for surgical procedures. Surgeons interact with a large number of staff and patients on a daily basis. Thus, the risk of infection transmission between them raises concerns. In addition, pre- and post-operative assessment also raises concerns about increasing the risk of disease transmission, in particular, since many patients may have other underlying conditions, which can increase their chances of mortality due to the virus. The pandemic has also limited the time more »
- Award ID(s):
- 2031594
- Publication Date:
- NSF-PAR ID:
- 10232265
- Journal Name:
- Frontiers in Robotics and AI
- Volume:
- 8
- ISSN:
- 2296-9144
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Introduction: New financial incentives, such as reduced Medicare reimbursements, have led hospitals to closely monitor their readmission rates and initiate efforts aimed at reducing them. In this context, many surgical departments participate in the American College of Surgeons National Surgical Quality Improvement Program (NSQIP), which collects detailed demographic, laboratory, clinical, procedure and perioperative occurrence data. The availability of such data enables the development of data science methods which predict readmissions and, as done in this paper, offer specific recommendations aimed at preventing readmissions. Materials and Methods: This study leverages NSQIP data for 722,101 surgeries to develop predictive and prescriptive models, predicting readmissions and offering real-time, personalized treatment recommendations for surgical patients during their hospital stay, aimed at reducing the risk of a 30-day readmission. We applied a variety of classification methods to predict 30-day readmissions and developed two prescriptive methods to recommend pre-operative blood transfusions to increase the patient’s hematocrit with the objective of preventing readmissions. The effect of these interventions was evaluated using several predictive models. Results: Predictions of 30-day readmissions based on the entire collection of NSQIP variables achieve an out-of-sample accuracy of 87% (Area Under the Curve—AUC). Predictions based only on pre-operative variables have an accuracy ofmore »
-
Scientists who perform major survival surgery on laboratory animals face a dual welfare and methodological challenge: how to choose surgical anesthetics and post-operative analgesics that will best control animal suffering, knowing that both pain and the drugs that manage pain can all affect research outcomes. Scientists who publish full descriptions of animal procedures allow critical and systematic reviews of data, demonstrate their adherence to animal welfare norms, and guide other scientists on how to conduct their own studies in the field. We investigated what information on animal pain management a reasonably diligent scientist might find in planning for a successful experiment. To explore how scientists in a range of fields describe their management of this ethical and methodological concern, we scored 400 scientific articles that included major animal survival surgeries as part of their experimental methods, for the completeness of information on anesthesia and analgesia. The 400 articles (250 accepted for publication pre-2011, and 150 in 2014–15, along with 174 articles they reference) included thoracotomies, craniotomies, gonadectomies, organ transplants, peripheral nerve injuries, spinal laminectomies and orthopedic procedures in dogs, primates, swine, mice, rats and other rodents. We scored articles for Publication Completeness (PC), which was any mention of use ofmore »
-
Cervical disc implants are conventional surgical treatments for patients with degenerative disc disease, such as cervical myelopathy and radiculopathy. However, the surgeon still must determine the candidacy of cervical disc implants mainly from the findings of diagnostic imaging studies, which can sometimes lead to complications and implant failure. To help address these problems, a new approach was developed to enable surgeons to preview the post-operative effects of an artificial disc implant in a patient-specific fashion prior to surgery. To that end, a robotic replica of a person’s spine was 3D printed, modified to include an artificial disc implant, and outfitted with a soft magnetic sensor array. The aims of this study are threefold: first, to evaluate the potential of a soft magnetic sensor array to detect the location and amplitude of applied loads; second, to use the soft magnetic sensor array in a 3D printed human spine replica to distinguish between five different robotically actuated postures; and third, to compare the efficacy of four different machine learning algorithms to classify the loads, amplitudes, and postures obtained from the first and second aims. Benchtop experiments showed that the soft magnetic sensor array was capable of precisely detecting the location and amplitudemore »
-
Reddy, S. ; Winter, J.S. ; Padmanabhan, S. (Ed.)AI applications are poised to transform health care, revolutionizing benefits for individuals, communities, and health-care systems. As the articles in this special issue aptly illustrate, AI innovations in healthcare are maturing from early success in medical imaging and robotic process automation, promising a broad range of new applications. This is evidenced by the rapid deployment of AI to address critical challenges related to the COVID-19 pandemic, including disease diagnosis and monitoring, drug discovery, and vaccine development. At the heart of these innovations is the health data required for deep learning applications. Rapid accumulation of data, along with improved data quality, data sharing, and standardization, enable development of deep learning algorithms in many healthcare applications. One of the great challenges for healthcare AI is effective governance of these data—ensuring thoughtful aggregation and appropriate access to fuel innovation and improve patient outcomes and healthcare system efficiency while protecting the privacy and security of data subjects. Yet the literature on data governance has rarely looked beyond important pragmatic issues related to privacy and security. Less consideration has been given to unexpected or undesirable outcomes of healthcare in AI, such as clinician deskilling, algorithmic bias, the “regulatory vacuum”, and lack of public engagement. Amidstmore »