skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Definable Regularity Lemmas for NIP Hypergraphs
Abstract We present a systematic study of the regularity phenomena for NIP hypergraphs and connections to the theory of (locally) generically stable measures, providing a model-theoretic hypergraph version of the results of Alon-Fischer-Newman and Lov\'asz-Szegedy for graphs of bounded VC-dimension. We also consider the two extremal cases of regularity for stable and distal hypergraphs, improving and generalizing the corresponding results for graphs in the literature. Finally, we consider a related question of the existence of large (approximately) homogeneous definable subsets of NIP hypergraphs and provide some positive results and counterexamples, in particular for graphs definable in the p-adics.  more » « less
Award ID(s):
1651321 1800806
PAR ID:
10232816
Author(s) / Creator(s):
;
Date Published:
Journal Name:
The Quarterly Journal of Mathematics
ISSN:
0033-5606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Theregularity methodwas pioneered by Szemerédi for graphs and is an important tool in extremal combinatorics. Over the last two decades, several extensions to hypergraphs were developed which were based on seemingly different notions ofquasirandomhypergraphs. We consider the regularity lemmata for three‐uniform hypergraphs of Frankl and Rödl and of Gowers, and present a new proof that the concepts behind these approaches are equivalent. 
    more » « less
  2. Abstract Szemerédi 's Regularity Lemma is a powerful tool in graph theory. It asserts that all large graphs admit bounded partitions of their edge sets, most classes of which consist of uniformly distributed edges. The original proof of this result was nonconstructive, and a constructive proof was later given by Alon, Duke, Lefmann, Rödl, and Yuster. Szemerédi's Regularity Lemma was extended to hypergraphs by various authors. Frankl and Rödl gave one such extension in the case of 3‐uniform hypergraphs, which was later extended tok‐uniform hypergraphs by Rödl and Skokan. W.T. Gowers gave another such extension, using a different concept of regularity than that of Frankl, Rödl, and Skokan. Here, we give a constructive proof of a regularity lemma for hypergraphs. 
    more » « less
  3. null (Ed.)
    Abstract We investigate bounds in Ramsey’s theorem for relations definable in NIP structures. Applying model-theoretic methods to finitary combinatorics, we generalize a theorem of Bukh and Matousek ( Duke Mathematical Journal 163 (12) (2014), 2243–2270) from the semialgebraic case to arbitrary polynomially bounded $$o$$ -minimal expansions of $$\mathbb{R}$$ , and show that it does not hold in $$\mathbb{R}_{\exp }$$ . This provides a new combinatorial characterization of polynomial boundedness for $$o$$ -minimal structures. We also prove an analog for relations definable in $$P$$ -minimal structures, in particular for the field of the $$p$$ -adics. Generalizing Conlon et al.  ( Transactions of the American Mathematical Society 366 (9) (2014), 5043–5065), we show that in distal structures the upper bound for $$k$$ -ary definable relations is given by the exponential tower of height $k-1$ . 
    more » « less
  4. A hypergraph $$\mathcal H$$ is super-pancyclic if for each $$A \subseteq V(\mathcal H)$$ with $$|A| \geqslant 3$$, $$\mathcal H$$ contains a Berge cycle with base vertex set $$A$$. We present two natural necessary conditions for a hypergraph to be super-pancyclic, and show that in several classes of hypergraphs these necessary conditions are also sufficient. In particular, they are sufficient for every hypergraph $$\mathcal H$$ with $$ \delta(\mathcal H)\geqslant \max\{|V(\mathcal H)|, \frac{|E(\mathcal H)|+10}{4}\}$$. We also consider super-cyclic bipartite graphs: those are $(X,Y)$-bigraphs $$G$$ such that for each $$A \subseteq X$$ with $$|A| \geqslant 3$$, $$G$$ has a cycle $$C_A$$ such that $$V(C_A)\cap X=A$$. Such graphs are incidence graphs of super-pancyclic hypergraphs, and our proofs use the language of such graphs. 
    more » « less
  5. Abstract We prove various results around indiscernibles in monadically NIP theories. First, we provide several characterizations of monadic NIP in terms of indiscernibles, mirroring previous characterizations in terms of the behavior of finite satisfiability. Second, we study (monadic) distality in hereditary classes and complete theories. Here, via finite combinatorics, we prove a result implying that every planar graph admits a distal expansion. Finally, we prove a result implying that no monadically NIP theory interprets an infinite group, and note an example of a (monadically) stable theory with no distal expansion that does not interpret an infinite group. 
    more » « less