The drag force on a spherical intruder in dense granular shear flows is studied using discrete element method simulations. Three regimes of the intruder dynamics are observed depending on the magnitude of the drag force (or the corresponding intruder velocity) and the flow inertial number: a fluctuation-dominated regime for small drag forces; a viscous regime for intermediate drag forces; and an inertial (cavity formation) regime for large drag forces. The transition from the viscous regime (linear force-velocity relation) to the inertial regime (quadratic force-velocity relation) depends further on the inertial number. Despite these distinct intruder dynamics, we find a quantitative similarity between the intruder drag in granular shear flows and the Stokesian drag on a sphere in a viscous fluid for intruder Reynolds numbers spanning five orders of magnitude. Beyond this first-order description, a modified Stokes drag model is developed that accounts for the secondary dependence of the drag coefficient on the inertial number and the intruder size and density ratios. When the drag model is coupled with a segregation force model for intruders in dense granular flows, it is possible to predict the velocity of gravity-driven segregation of an intruder particle in shear flow simulations. 
                        more » 
                        « less   
                    
                            
                            Stochastic models for capturing dispersion in particle-laden flows
                        
                    
    
            This study provides a detailed account of stochastic approaches that may be utilized in Eulerian–Lagrangian simulations to account for neighbour-induced drag force fluctuations. The frameworks examined here correspond to Langevin equations for the particle position (PL), particle velocity (VL) and fluctuating drag force (FL). Rigorous derivations of the particle velocity variance (granular temperature) and dispersion resulting from each method are presented. The solutions derived herein provide a basis for comparison with particle-resolved direct numerical simulation. The FL method allows for the most complex behaviour, enabling control of both the granular temperature and dispersion. A Stokes number $$St_F$$ is defined for the fluctuating force that relates the integral time scale of the force to the Stokes response time. Formal convergence of the FL scheme to the VL scheme is shown for $$St_F \gg 1$$ . In the opposite limit, $$St_F \ll 1$$ , the fluctuating drag forces are highly inertial and the FL scheme departs significantly from the VL scheme. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10233028
- Date Published:
- Journal Name:
- Journal of Fluid Mechanics
- Volume:
- 903
- ISSN:
- 0022-1120
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            We derive analytical solutions for hydrodynamic sources and sinks to granular temperature in moderately dense suspensions of elastic particles at finite Reynolds numbers. Modelling the neighbour-induced drag disturbances with a Langevin equation allows an exact solution for the joint fluctuating acceleration–velocity distribution function $$P(v^{\prime },a^{\prime };t)$$ . Quadrant-conditioned covariance integrals of $$P(v^{\prime },a^{\prime };t)$$ yield the hydrodynamic source and sink that dictate the evolution of granular temperature that can be used in Eulerian two-fluid models. Analytical predictions agree with benchmark data from particle-resolved direct numerical simulations and show promise as a general theory from gas–solid to bubbly flows.more » « less
- 
            Lift and drag forces on moving intruders in flowing granular materials are of fundamental interest but have not yet been fully characterized. Drag on an intruder in granular shear flow has been studied almost exclusively for the intruder moving across flow streamlines, and the few studies of the lift explore a relatively limited range of parameters. Here, we use discrete element method simulations to measure the lift force,$$F_{{L}}$$, and the drag force on a spherical intruder in a uniformly sheared bed of smaller spheres for a range of streamwise intruder slip velocities,$$u_{{s}}$$. The streamwise drag matches the previously characterized Stokes-like cross-flow drag. However,$$F_{{L}}$$in granular shear flow acts in the opposite direction to the Saffman lift in a sheared fluid at low$$u_{{s}}$$, reaches a maximum value and then decreases with increasing$$u_{{s}}$$, eventually reversing direction. This non-monotonic response holds over a range of flow conditions, and the$$F_{{L}}$$versus$$u_{{s}}$$data collapse when both quantities are scaled using the particle size, shear rate and overburden pressure. Analogous fluid simulations demonstrate that the flow around the intruder particle is similar in the granular and fluid cases. However, the shear stress on the granular intruder is notably less than that in a fluid shear flow. This difference, combined with a void behind the intruder in granular flow in which the stresses are zero, significantly changes the lift-force-inducing stresses acting on the intruder between the granular and fluid cases.more » « less
- 
            Using a numerical model, we analyse the effects of shape on both the orientation and transport of anisotropic particles in wavy flows. The particles are idealized as prolate and oblate spheroids, and we consider the regime of small Stokes and particle Reynolds numbers. We find that the particles preferentially align into the shear plane with a mean orientation that is solely a function of their aspect ratio. This alignment, however, differs from the Jeffery orbits that occur in the residual shear flow (that is, the Stokes drift velocity field) in the absence of waves. Since the drag on an anisotropic particle depends on its alignment with the flow, this preferred orientation determines the effective drag on the particles, which in turn impacts their net downstream transport. We also find that the rate of alignment of the particles is not constant and depends strongly on their initial orientation; thus, variations in initial particle orientation result in dispersion of anisotropic-particle plumes. We show that this dispersion is a function of the particle’s eccentricity and the ratio of the settling and wave time scales. Due to this preferential alignment, we find that a plume of anisotropic particles in waves is on average transported farther but dispersed less than it would be if the particles were randomly oriented. Our results demonstrate that accurate prediction of the transport of anisotropic particles in wavy environments, such as microplastic particles in the ocean, requires the consideration of these preferential alignment effects.more » « less
- 
            Bounding walls or immersed surfaces are utilized in many industrial systems as the primary thermal source to heat a gas–solids mixture. Previous efforts to resolve the solids’ heat transfer near a boundary involve the extension of unbounded convection correlations into the near-wall region in conjunction with particle-scale theories for indirect conduction. Moreover, unbounded drag correlations are utilized in the near-wall region (without modification) to resolve the force exerted on a solid particle by the fluid. We rigorously test unbounded correlations and indirect conduction theory against outputs from direct numerical simulation of laminar flow past a hot plate and a static, cold particle. Here, local variables are utilized for consistency with unresolved computational fluid dynamics discrete element methods and lead to new unbounded correlations that are self-similar to those obtained with free-stream variables. The new drag correlation with local fluid velocity captures the drag force in both the unbounded system as well as the near-wall region while the classic, unbounded drag correlation with free-stream fluid velocity dramatically over-predicts the drag force in the near-wall region. Similarly, classic, unbounded convection correlations are found to under-predict the heat transfer occurring in the near-wall region. Inclusion of indirect conduction, in addition to unbounded convection, performs markedly better. To account for boundary effects, a new Nusselt correlation is developed for the heat transfer in excess of local, unbounded convection. The excess wall Nusselt number depends solely on the dimensionless particle–wall separation distance and asymptotically decays to zero for large particle–wall separation distances, seaming together the unbounded and near-wall regions.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    