skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Native biodiversity collapse in the eastern Mediterranean
Global warming causes the poleward shift of the trailing edges of marine ectotherm species distributions. In the semi-enclosed Mediterranean Sea, continental masses and oceanographic barriers do not allow natural connectivity with thermophilic species pools: as trailing edges retreat, a net diversity loss occurs. We quantify this loss on the Israeli shelf, among the warmest areas in the Mediterranean, by comparing current native molluscan richness with the historical one obtained from surficial death assemblages. We recorded only 12% and 5% of historically present native species on shallow subtidal soft and hard substrates, respectively. This is the largest climate-driven regional-scale diversity loss in the oceans documented to date. By contrast, assemblages in the intertidal, more tolerant to climatic extremes, and in the cooler mesophotic zone show approximately 50% of the historical native richness. Importantly, approximately 60% of the recorded shallow subtidal native species do not reach reproductive size, making the shallow shelf a demographic sink. We predict that, as climate warms, this native biodiversity collapse will intensify and expand geographically, counteracted only by Indo-Pacific species entering from the Suez Canal. These assemblages, shaped by climate warming and biological invasions, give rise to a ‘novel ecosystem’ whose restoration to historical baselines is not achievable.  more » « less
Award ID(s):
1855381
PAR ID:
10233130
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the Royal Society B: Biological Sciences
Volume:
288
Issue:
1942
ISSN:
0962-8452
Page Range / eLocation ID:
20202469
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Ecological impacts associated with ant introductions have received considerable attention, but most studies that report on these impacts contrast species assemblages between invaded and uninvaded sites. Given the low inferential power of this type of space-for-time comparison, alternative approaches are needed to evaluate claims that ant invasions drive native species loss. Here, we use long-term data sets from two different Argentine ant eradication programs on the California Channel Islands to examine how the richness and composition of native ant assemblages change before and after invasion (but prior to the initiation of treatments). At four different sites on two different islands, pre-invasion native ant assemblages closely resembled those at uninvaded (control) sites in terms of species richness, species composition, and the presence of multiple indicator species. Invader arrival coincided with large (> 75%) and rapid (within 1 year) declines in species richness, shifts in species composition, and the loss of indicator species. These impacts will hopefully be reversed by the recolonization of formerly invaded areas by native ant species following Argentine ant treatment, and long-term studies of native ant recovery at these sites are ongoing. Unchecked spread of the Argentine ant on other islands in this archipelago, however, poses a grave threat to native ants, which include a number of endemic taxa. 
    more » « less
  2. Abstract Species around the world are shifting their ranges in response to climate change. To make robust predictions about climate‐related colonizations and extinctions, it is vital to understand the dynamics of range edges. This study is among the first to examine annual dynamics of cold and warm range edges, as most global change studies average observational data over space or over time. We analyzed annual range edge dynamics of marine fishes—both at the individual species level and pooled into cold‐ and warm‐edge assemblages—in a multi‐decade time‐series of trawl surveys conducted on the Northeast US Shelf during a period of rapid warming. We tested whether cold edges show stronger evidence of climate tracking than warm edges (due to non‐climate processes or time lags at the warm edge; thebiogeography hypothesisorextinction debt hypothesis), or whether they tracked temperature change equally (due to the influence of habitat suitability; theecophysiology hypothesis). In addition to exploring correlations with regional temperature change, we calculated species‐ and assemblage‐specific sea bottom and sea surface temperature isotherms and used them to predict range edge position. Cold edges shifted further and tracked sea surface and bottom temperature isotherms to a greater degree than warm edges. Mixed‐effects models revealed that for a one‐degree latitude shift in isotherm position, cold edges shifted 0.47 degrees of latitude, and warm edges shifted only 0.28 degrees. Our results suggest that cold range edges are tracking climate change better than warm range edges, invalidating the ecophysiology hypothesis. We also found that even among highly mobile marine ectotherms in a global warming hotspot, few species are fully keeping pace with climate. 
    more » « less
  3. Abstract Many predictions of how climate change will impact biodiversity have focused on range shifts using species‐wide climate tolerances, an approach that ignores the demographic mechanisms that enable species to attain broad geographic distributions. But these mechanisms matter, as responses to climate change could fundamentally differ depending on the contributions of life‐history plasticity vs. local adaptation to species‐wide climate tolerances. In particular, if local adaptation to climate is strong, populations across a species’ range—not only those at the trailing range edge—could decline sharply with global climate change. Indeed, faster rates of climate change in many high latitude regions could combine with local adaptation to generate sharper declines well away from trailing edges. Combining 15 years of demographic data from field populations across North America with growth chamber warming experiments, we show that growth and survival in a widespread tundra plant show compensatory responses to warming throughout the species’ latitudinal range, buffering overall performance across a range of temperatures. However, populations also differ in their temperature responses, consistent with adaptation to local climate, especially growing season temperature. In particular, warming begins to negatively impact plant growth at cooler temperatures for plants from colder, northern populations than for those from warmer, southern populations, both in the field and in growth chambers. Furthermore, the individuals and maternal families with the fastest growth also have the lowest water use efficiency at all temperatures, suggesting that a trade‐off between growth and water use efficiency could further constrain responses to forecasted warming and drying. Taken together, these results suggest that populations throughout species’ ranges could be at risk of decline with continued climate change, and that the focus on trailing edge populations risks overlooking the largest potential impacts of climate change on species’ abundance and distribution. 
    more » « less
  4. Abstract Asymmetries in responses to climate change have the potential to alter important predator–prey interactions, in part by altering the location and size of spatial refugia for prey. We evaluated the effect of ocean warming on interactions between four important piscivores and four of their prey in the U.S. Northeast Shelf by examining species overlap under historical conditions (1968–2014) and with a doubling inCO2. Because both predator and prey shift their distributions in response to changing ocean conditions, the net impact of warming or cooling on predator–prey interactions was not determined a priori from the range extent of either predator or prey alone. For Atlantic cod, an historically dominant piscivore in the region, we found that both historical and future warming led to a decline in the proportion of prey species’ range it occupied and caused a potential reduction in its ability to exert top‐down control on these prey. In contrast, the potential for overlap of spiny dogfish with prey species was enhanced by warming, expanding their importance as predators in this system. In sum, the decline in the ecological role for cod that began with overfishing in this ecosystem will likely be exacerbated by warming, but this loss may be counteracted by the rise in dominance of other piscivores with contrasting thermal preferences. Functional diversity in thermal affinity within the piscivore guild may therefore buffer against the impact of warming on marine ecosystems, suggesting a novel mechanism by which diversity confers resilience. 
    more » « less
  5. Biogeographical patterns are increasingly modified by the human-driven translocation of species, a process that accelerated several centuries ago. Observational datasets, however, rarely range back more than a few decades, implying that a large part of invasion histories went unobserved. Small-sized organisms, like benthic foraminifera, are more likely to have been reported only recently due to their lower detectability compared to larger-sized organisms. Recently detected native species of tropical affinity may have thus been mistaken for non-indigenous species due to the lack of evidence of their occurrence in pre-invasion records. To uncover the unobserved past of the Lessepsian invasion—the entrance of tropical species into the Mediterranean through the Suez Canal—we collected sediment cores on the southern Israeli shelf. We deployed state-of-the-art radiocarbon techniques to date 7 individual foraminiferal tests belonging to 5 alleged non-indigenous species and show that they are centuries to millennia old, thus native. Two additional species previously considered non-indigenous occurred in centennial to millennia-old sediments, suggesting their native status. The evidence of multiple tropical foraminiferal species supposed to be non-indigenous but proved native in the eastern Mediterranean suggests either survival in refugia during the Messinian Salinity Crisis (5.96-5.33 million years) or, more likely, dispersal from the tropical Atlantic and Indo-Pacific during the Pleistocene. In the interglacials of this epoch, higher sea levels may have allowed biological connectivity between the Mediterranean and the Red Sea for shallow-water species, showing that the Isthmus of Suez was possibly a more biologically porous barrier than previously considered. 
    more » « less