skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Experiments on Probing the Configuration Space of Post-Buckled Panels
Abstract This paper describes a primarily experimental study in which a nonlinear structural component (a slender, mechanically buckled panel) is subject to probing. That is, equilibrium configurations are explored when a specific location on the panel is subject to the application of a (variable) displacement constraint and characterized by a corresponding probe force. This probe force (in this study located at the center of the rectangular panels) is measured using a load cell and the resulting shape(s), taken up by the panel, measured using digital image correlation (DIC). Although the probe is only applied at a single location, this arrangement supplies considerable information about the changing equilibrium landscape including revealing co-existing equilibrium configurations using large perturbations and associated hysteresis phenomena. In addition, monitoring the probing force, and specifically when it drops to zero, provides a window into “free” equilibria that would otherwise be unstable and unobservable. Finally, it is shown that the probed equilibrium configurations provide the “landscape” within which any dynamically induced trajectories evolve including snap-through oscillations.  more » « less
Award ID(s):
1926672
PAR ID:
10233568
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Applied Mechanics
Volume:
87
Issue:
12
ISSN:
0021-8936
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Precisely quantifying the energetics that drive the folding of membrane proteins into a lipid bilayer remains challenging. More than 15 years ago, atomic force microscopy (AFM) emerged as a powerful tool to mechanically extract individual membrane proteins from a lipid bilayer. Concurrently, fluctuation theorems, such as the Jarzynski equality, were applied to deduce equilibrium free energies (ΔG0) from non-equilibrium single-molecule force spectroscopy records. The combination of these two advances in single-molecule studies deduced the free-energy of the model membrane protein bacteriorhodopsin in its native lipid bilayer. To elucidate this free-energy landscape at a higher resolution, we applied two recent developments. First, as an input to the reconstruction, we used force-extension curves acquired with a 100-fold higher time resolution and 10-fold higher force precision than traditional AFM studies of membrane proteins. Next, by using an inverse Weierstrass transform and the Jarzynski equality, we removed the free energy associated with the force probe and determined the molecular free-energy landscape of the molecule under study, bacteriorhodopsin. The resulting landscape yielded an average unfolding free energy per amino acid (aa) of 1.0 ± 0.1 kcal/mol, in agreement with past single-molecule studies. Moreover, on a smaller spatial scale, this high-resolution landscape also agreed with an equilibrium measurement of a particular three-aa transition in bacteriorhodopsin that yielded 2.7 kcal/mol/aa, an unexpectedly high value. Hence, while average unfolding ΔG0 per aa is a useful metric, the derived high-resolution landscape details significant local variation from the mean. More generally, we demonstrated that, as anticipated, the inverse Weierstrass transform is an efficient means to reconstruct free-energy landscapes from AFM data. 
    more » « less
  2. Host–guest interactions are important to the design of pharmaceuticals and, more broadly, to soft materials as they can enable targeted, strong, and specific interactions between molecules. The binding process between the host and guest may be classified as a “rare event” when viewing the system at atomic scales, such as those explored in molecular dynamics simulations. To obtain equilibrium binding conformations and dissociation constants from these simulations, it is essential to resolve these rare events. Advanced sampling methods such as the adaptive biasing force (ABF) promote the occurrence of less probable configurations in a system, therefore facilitating the sampling of essential collective variables that characterize the host–guest interactions. Here, we present the application of ABF to a rod–cavitand coarse-grained model of host–guest systems to acquire the potential of mean force. We show that the employment of ABF enables the computation of the configurational and thermodynamic properties of bound and unbound states, including the free energy landscape. Moreover, we identify important dynamic bottlenecks that limit sampling and discuss how these may be addressed in more general systems. 
    more » « less
  3. We consider a scalar QED (quantum electrodynamics) model for the frictional force and the momentum fluctuations of a polarizable particle in thermal equilibrium with radiation or in hyperbolic motion in a vacuum. In the former case the loss of particle kinetic energy due to the frictional force is compensated by the increase in kinetic energy associated with the momentum diffusion, resulting in the Planck distribution when it is assumed that the average kinetic energy satisfies the equipartition theorem. For hyperbolic motion in vacuum the frictional force and the momentum diffusion are similarly consistent with an equilibrium with a Planckian distribution at the temperature T=ℏa/2πkBc. The quantum fluctuations of the momentum imply that it is only the average acceleration a that is constant when the particle is subject to a constant applied force. 
    more » « less
  4. null (Ed.)
    Previous evidence demonstrated that individuals can recall a target’s location in a search display even if location information is completely task-irrelevant. This finding raises the question: does this ability to automatically encode a single item’s location into a reportable memory trace extend to other aspects of spatial information as well? We tested this question using a paradigm designed to elicit attribute amnesia (Chen & Wyble, 2015a). Participants were initially asked to report the location of a target letter among digits with stimuli arranged to form one of two or four spatial configurations varying randomly across trials. After completing numerous trials that matched their expectations, participants were surprised with a series of unexpected questions probing their memory for various aspects of the display they had just viewed. Participants had a profound inability to report which spatial configuration they had just perceived when the target’s location was not unique to a specific configuration (i.e., orthogonal). Despite being unable to report the most recent configuration, answer choices on the surprise trial were focused around previously seen configurations, rather than novel configurations. Thus, there were clear memories of the set of configurations that had been viewed during the experiment but not of the specific configuration from the most recent trial. This finding helps to set boundary conditions on previous findings regarding the automatic encoding of location information into memory. 
    more » « less
  5. We consider linear combinatorial optimization problems under uncertain disruptions that increase the cost coefficients of the objective function. A decision maker, or planner, can invest resources to probe the components (i.e., the coefficients) in order to learn their disruption status. In the proposed probing optimization problem, the planner, knowing just the disruptions’ probabilities, selects which components to probe subject to a probing budget in a first decision stage. Then, the uncertainty realizes, and the planner observes the disruption status of the probed components, after which the planner solves the combinatorial problem in the second stage. In contrast to standard two-stage stochastic optimization, the planner does not have access to the full uncertainty realization in the second stage. Consequently, the planner cannot directly optimize the second-stage objective function, which is given by the actual cost after disruptions, and the decisions have to be made based on an estimate of the cost. By assuming that the estimate is given by the conditional expected cost given the information revealed by probing, we reformulate the probing optimization problem as a bilevel problem with multiple followers and propose an exact algorithm based on a value function reformulation and three heuristic algorithms. We derive theoretical results that bound the value of information and the price of not having full information and a bound on the required probing budget that attains the same performance as full information. Our extensive computational experiments suggest that probing a fraction of the components is sufficient to yield large improvements in the optimal value, that our exact algorithm is competitive for small- to medium-scale instances, and that the proposed heuristics find high-quality solutions in large-scale instances. History: Accepted by Andrea Lodi, Area Editor for Design & Analysis of Algorithms–Discrete. Funding: This work was supported by the Air Force Office of Scientific Research [Grant FA9550-22-1-0236] and the Division of Civil, Mechanical and Manufacturing Innovation [Grant CMMI 2145553]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2024.0629 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2024.0629 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ . 
    more » « less