skip to main content


Title: The effect of changing sea ice on nearshore wave climate trends along Alaska’s central Beaufort Sea coast
Diminishing sea ice is impacting the wave field across the Arctic region. Recent observation and model-based studies highlight the spatiotemporal influence of sea ice on offshore wave climatologies, but effects within the nearshore region are still poorly described. This study characterizes the wave climate in the central Beaufort Sea coast from 1979 to 2019 by utilizing a wave hindcast model that uses ERA5 winds, waves, and ice concentrations as input. The spectral wave model SWAN is calibrated and validated based on more than 10,000 in situ measurements collected over a 13-year time period across the region, with friction variations and empirical coefficients for newly implemented empirical ice formulations for the open water season. Model results and trends are analyzed over the 41-year time period using the non-parametric Mann-Kendall test, including an estimate of Sen’s slope. The model results show that the reduction of sea ice concentration correlates strongly with increases in average and extreme wave conditions. In particular, the open water season extended by ~96 days over the 41-year time period (~2.4 days/yr), resulting in a five-fold increase of the yearly cumulative wave power. Moreover, the open water season extends later into the year, resulting in relatively open-water conditions during fall storms with high wind speeds. The later freeze-up results in an increase of the annual offshore median wave heights of 1% per year and an increase in the average number of rough wave days (defined as days when maximum wave heights exceed 2.5 m) from 1.5 in 1979 to 13.1 days in 2019. Trends in the nearshore areas deviate from the patterns offshore. Model results indicate a non-breaking depth induced saturation limit for high wave heights in the shallow areas of Foggy Island Bay. Similar patterns are found for yearly cumulative wave power.  more » « less
Award ID(s):
1656026
NSF-PAR ID:
10343035
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
The cryosphere discussions
ISSN:
1994-0440
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Observational data of coastal change over much of the Arctic are limited largely due to its immensity, remoteness, harsh environment, and restricted periods of sunlight and ice-free conditions. Barter Island, Alaska, is one of the few locations where an extensive, observational dataset exists, which enables a detailed assessment of the trends and patterns of coastal change over decadal to annual time scales. Coastal bluff and shoreline positions were delineated from maps, aerial photographs, and satellite imagery acquired between 1947 and 2020, and at a nearly annual rate since 2004. Rates and patterns of shoreline and bluff change varied widely over the observational period. Shorelines showed a consistent trend of southerly erosion and westerly extension of the western termini of Barter Island and Bernard Spit, which has accelerated since at least 2000. The 3.2 km long stretch of ocean-exposed coastal permafrost bluffs retreated on average 114 m and at a maximum of 163 m at an average long-term rate (70 year) of 1.6 ± 0.1 m/yr. The long-term retreat rate was punctuated by individual years with retreat rates up to four times higher (6.6 ± 1.9 m/yr; 2012–2013) and both long-term (multidecadal) and short-term (annual to semiannual) rates showed a steady increase in retreat rates through time, with consistently high rates since 2015. A best-fit polynomial trend indicated acceleration in retreat rates that was independent of the large spatial and temporal variations observed on an annual basis. Rates and patterns of bluff retreat were correlated to incident wave energy and air and water temperatures. Wave energy was found to be the dominant driver of bluff retreat, followed by sea surface temperatures and warming air temperatures that are considered proxies for evaluating thermo-erosion and denudation. Normalized anomalies of cumulative wave energy, duration of open water, and air and sea temperature showed at least three distinct phases since 1979: a negative phase prior to 1987, a mixed phase between 1987 and the early to late 2000s, followed by a positive phase extending to 2020. The duration of the open-water season has tripled since 1979, increasing from approximately 40 to 140 days. Acceleration in retreat rates at Barter Island may be related to increases in both thermodenudation, associated with increasing air temperature, and the number of niche-forming and block-collapsing episodes associated with higher air and water temperature, more frequent storms, and longer ice-free conditions in the Beaufort Sea. 
    more » « less
  2. The timing of sea ice retreat and advance in Arctic coastal waters varies substantially from year to year. Various activities, ranging from marine transport to the use of sea ice as a platform for industrial activity or winter travel, are af- fected by variations in the timing of breakup and freeze-up, resulting in a need for indicators to document the regional and temporal variations in coastal areas. The primary objec- tive of this study is to use locally based metrics to construct indicators of breakup and freeze-up in the Arctic and subarc- tic coastal environment. The indicators developed here are based on daily sea ice concentrations derived from satellite passive-microwave measurements. The “day of year” indica- tors are designed to optimize value for users while building on past studies characterizing breakup and freeze-up dates in the open pack ice. Relative to indicators for broader adja- cent seas, the coastal indicators generally show later breakup at sites known to have landfast ice. The coastal indicators also show earlier freeze-up at some sites in comparison with freeze-up for broader offshore regions, likely tied to ear- lier freezing of shallow-water regions and areas affected by freshwater input from nearby streams and rivers. A factor analysis performed to synthesize the local indicator varia- tions shows that the local breakup and freeze-up indicators have greater spatial variability than corresponding metrics based on regional ice coverage. However, the trends towards earlier breakup and later freeze-up are unmistakable over the post-1979 period in the synthesized metrics of coastal breakup and freeze-up and the corresponding regional ice coverage. The findings imply that locally defined indicators can serve as key links between pan-Arctic or global indica- tors such as sea ice extent or volume and local uses of sea ice, with the potential to inform community-scale adaptation and response. 
    more » « less
  3. Westergaard-Nielsen, Andreas (Ed.)
    Massive declines in sea ice cover and widespread warming seawaters across the Pacific Arctic region over the past several decades have resulted in profound shifts in marine ecosystems that have cascaded throughout all trophic levels. The Distributed Biological Observatory (DBO) provides sampling infrastructure for a latitudinal gradient of biological “hotspot” regions across the Pacific Arctic region, with eight sites spanning the northern Bering, Chukchi, and Beaufort Seas. The purpose of this study is two-fold: (a) to provide an assessment of satellite-based environmental variables for the eight DBO sites (including sea surface temperature (SST), sea ice concentration, annual sea ice persistence and the timing of sea ice breakup/formation, chlorophyll- a concentrations, primary productivity, and photosynthetically available radiation (PAR)) as well as their trends across the 2003–2020 time period; and (b) to assess the importance of sea ice presence/open water for influencing primary productivity across the region and for the eight DBO sites in particular. While we observe significant trends in SST, sea ice, and chlorophyll- a /primary productivity throughout the year, the most significant and synoptic trends for the DBO sites have been those during late summer and autumn (warming SST during October/November, later shifts in the timing of sea ice formation, and increases in chlorophyll- a /primary productivity during August/September). Those DBO sites where significant increases in annual primary productivity over the 2003–2020 time period have been observed include DBO1 in the Bering Sea (37.7 g C/m 2 /year/decade), DBO3 in the Chukchi Sea (48.0 g C/m 2 /year/decade), and DBO8 in the Beaufort Sea (38.8 g C/m 2 /year/decade). The length of the open water season explains the variance of annual primary productivity most strongly for sites DBO3 (74%), DBO4 in the Chukchi Sea (79%), and DBO6 in the Beaufort Sea (78%), with DBO3 influenced most strongly with each day of additional increased open water (3.8 g C/m 2 /year per day). These synoptic satellite-based observations across the suite of DBO sites will provide the legacy groundwork necessary to track additional and inevitable future physical and biological change across the region in response to ongoing climate warming. 
    more » « less
  4. null (Ed.)
    Space-use by aquatic ectotherms is closely linked to environmental factors such as temperature due to thermal-mediated metabolism and energy requirements. These factors are important, as they may alter an animal’s exposure to food/predators, hinder physiological function, increase competitive interactions, or even prompt population or biodiversity loss. Using general linear mixed-effects models, we investigated the influence of medium-term (months-years) environmental (diel period, water temperature, season, wind speed, air pressure, habitat type) and biological (turtle size) variation on space-use metrics for the Critically Endangered hawksbill sea turtle Eretmochelys imbricata , including dive duration, activity space, and rate of movement. We tracked 17 resident juveniles between August 2015 and May 2018 with a compact acoustic telemetry array (35-41 receivers in ~1 km 2 ) in Brewers Bay, US Virgin Islands. Diel differences in space-use were significant and highlighted periods of relative inactivity (e.g. resting) during the night and activity (e.g. foraging) during the day. Water temperature was also an important covariate influencing behavior leading to shorter dive durations and higher rates of movement in warmer temperatures. High contribution of random effects (individual and year) to model variation was also apparent, suggesting that juvenile hawksbills can operate outside the relatively narrow environmental range experienced within the study area. Nevertheless, ongoing climate trends (e.g. warmer temperatures and more extreme weather events) pose a significant concern for hawksbill populations, as juveniles spend their developmental period in shallow nearshore areas where environmental impacts will likely be greatest. 
    more » « less
  5. Abstract

    The oceanographic response and atmospheric forcing associated with downwelling along the Alaskan Beaufort Sea shelf/slope is described using mooring data collected from August 2002 to September 2004, along with meteorological time series, satellite data, and reanalysis fields. In total, 55 downwelling events are identified with peak occurrence in July and August. Downwelling is initiated by cyclonic low‐pressure systems displacing the Beaufort High and driving westerly winds over the region. The shelfbreak jet responds by accelerating to the east, followed by a depression of isopycnals along the outer shelf and slope. The storms last 3.25 ± 1.80 days, at which point conditions relax toward their mean state. To determine the effect of sea ice on the oceanographic response, the storms are classified into four ice seasons: open water, partial ice, full ice, and fast ice (immobile). For a given wind strength, the largest response occurs during partial ice cover, while the most subdued response occurs in the fast ice season. Over the two‐year study period, the winds were strongest during the open water season; thus, the shelfbreak jet intensified the most during this period and the cross‐stream Ekman flow was largest. During downwelling, the cold water fluxed off the shelf ventilates the upper halocline of the Canada Basin. The storms approach the Beaufort Sea along three distinct pathways: a northerly route from the high Arctic, a westerly route from northern Siberia, and a southerly route from south of Bering Strait. Differences in the vertical structure of the storms are presented as well.

     
    more » « less