skip to main content


Title: Language-based decisions
In Savage's classic decision-theoretic framework, actions are formally defined as functions from states to outcomes. But where do the state space and outcome space come from? Expanding on recent work by Blume, Easley, and Halpern [2006], we consider a language-based framework in which actions are identified with (conditional) descriptions in a simple underlying language, while states and outcomes (along with probabilities and utilities) are constructed as part of a representation theorem. Our work expands the role of language from that of Blume, Easley, and Halpern by using it not only for the conditions that determine which actions are taken, but also the effects. More precisely, we take the set of actions to be built from those of the form do(phi), for formulas phi in the underlying language. This presents a problem: how do we interpret the result of do(phi) when phi is underspecified (i.e., compatible with multiple states)? We answer this using tools familiar from the semantics of counterfactuals; roughly speaking, do(phi) maps each state to the ``closest'' phi-state. This notion of ``closest'' is also something we construct as part of the representation theorem; in effect, then, we prove that (under appropriate assumptions) the agent is acting as if each underspecified action is first made definite and then evaluated (i.e., by maximizing expected utility). Of course, actions in the real world are often not presented in a fully precise manner, yet agents reason about and form preferences among them all the same. Our work brings the abstract tools of decision theory into closer contact with such real-world scenarios.  more » « less
Award ID(s):
1703846
NSF-PAR ID:
10238280
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of Eighteenth Conference on Theoretical Aspects of Rationality and Knowledge (TARK)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In earlier work, we introduced the framework of language-based decisions, the core idea of which was to modify Savage's classical decision-theoretic framework by taking actions to be descriptions in some language, rather than functions from states to outcomes, as they are defined classically. Actions had the form ``if psi then do phi''', where psi and phi$ were formulas in some underlying language, specifying what effects would be brought about under what circumstances. The earlier work allowed only one-step actions. But, in practice, plans are typically composed of a sequence of steps. Here, we extend the earlier framework to \emph{sequential} actions, making it much more broadly applicable. Our technical contribution is a representation theorem in the classical spirit: agents whose preferences over actions satisfy certain constraints can be modeled as if they are expected utility maximizers. As in the earlier work, due to the language-based specification of the actions, the representation theorem requires a construction not only of the probability and utility functions representing the agent's beliefs and preferences, but also the state and outcomes spaces over which these are defined, as well as a ``selection function'' which intuitively captures how agents disambiguate coarse descriptions. The (unbounded) depth of action sequencing adds substantial interest (and complexity!) to the proof. 
    more » « less
  2. Embedding properties of network realizations of dissipative reduced order models Jörn Zimmerling, Mikhail Zaslavsky,Rob Remis, Shasri Moskow, Alexander Mamonov, Murthy Guddati, Vladimir Druskin, and Liliana Borcea Mathematical Sciences Department, Worcester Polytechnic Institute https://www.wpi.edu/people/vdruskin Abstract Realizations of reduced order models of passive SISO or MIMO LTI problems can be transformed to tridiagonal and block-tridiagonal forms, respectively, via dierent modications of the Lanczos algorithm. Generally, such realizations can be interpreted as ladder resistor-capacitor-inductor (RCL) networks. They gave rise to network syntheses in the rst half of the 20th century that was at the base of modern electronics design and consecutively to MOR that tremendously impacted many areas of engineering (electrical, mechanical, aerospace, etc.) by enabling ecient compression of the underlining dynamical systems. In his seminal 1950s works Krein realized that in addition to their compressing properties, network realizations can be used to embed the data back into the state space of the underlying continuum problems. In more recent works of the authors Krein's ideas gave rise to so-called nite-dierence Gaussian quadrature rules (FDGQR), allowing to approximately map the ROM state-space representation to its full order continuum counterpart on a judicially chosen grid. Thus, the state variables can be accessed directly from the transfer function without solving the full problem and even explicit knowledge of the PDE coecients in the interior, i.e., the FDGQR directly learns" the problem from its transfer function. This embedding property found applications in PDE solvers, inverse problems and unsupervised machine learning. Here we show a generalization of this approach to dissipative PDE problems, e.g., electromagnetic and acoustic wave propagation in lossy dispersive media. Potential applications include solution of inverse scattering problems in dispersive media, such as seismic exploration, radars and sonars. To x the idea, we consider a passive irreducible SISO ROM fn(s) = Xn j=1 yi s + σj , (62) assuming that all complex terms in (62) come in conjugate pairs. We will seek ladder realization of (62) as rjuj + vj − vj−1 = −shˆjuj , uj+1 − uj + ˆrj vj = −shj vj , (63) for j = 0, . . . , n with boundary conditions un+1 = 0, v1 = −1, and 4n real parameters hi, hˆi, ri and rˆi, i = 1, . . . , n, that can be considered, respectively, as the equivalent discrete inductances, capacitors and also primary and dual conductors. Alternatively, they can be viewed as respectively masses, spring stiness, primary and dual dampers of a mechanical string. Reordering variables would bring (63) into tridiagonal form, so from the spectral measure given by (62 ) the coecients of (63) can be obtained via a non-symmetric Lanczos algorithm written in J-symmetric form and fn(s) can be equivalently computed as fn(s) = u1. The cases considered in the original FDGQR correspond to either (i) real y, θ or (ii) real y and imaginary θ. Both cases are covered by the Stieltjes theorem, that yields in case (i) real positive h, hˆ and trivial r, rˆ, and in case (ii) real positive h,r and trivial hˆ,rˆ. This result allowed us a simple interpretation of (62) as the staggered nite-dierence approximation of the underlying PDE problem [2]. For PDEs in more than one variables (including topologically rich data-manifolds), a nite-dierence interpretation is obtained via a MIMO extensions in block form, e.g., [4, 3]. The main diculty of extending this approach to general passive problems is that the Stieltjes theory is no longer applicable. Moreover, the tridiagonal realization of a passive ROM transfer function (62) via the ladder network (63) cannot always be obtained in port-Hamiltonian form, i.e., the equivalent primary and dual conductors may change sign [1]. 100 Embedding of the Stieltjes problems, e.g., the case (i) was done by mapping h and hˆ into values of acoustic (or electromagnetic) impedance at grid cells, that required a special coordinate stretching (known as travel time coordinate transform) for continuous problems. Likewise, to circumvent possible non-positivity of conductors for the non-Stieltjes case, we introduce an additional complex s-dependent coordinate stretching, vanishing as s → ∞ [1]. This stretching applied in the discrete setting induces a diagonal factorization, removes oscillating coecients, and leads to an accurate embedding for moderate variations of the coecients of the continuum problems, i.e., it maps discrete coecients onto the values of their continuum counterparts. Not only does this embedding yields an approximate linear algebraic algorithm for the solution of the inverse problems for dissipative PDEs, it also leads to new insight into the properties of their ROM realizations. We will also discuss another approach to embedding, based on Krein-Nudelman theory [5], that results in special data-driven adaptive grids. References [1] Borcea, Liliana and Druskin, Vladimir and Zimmerling, Jörn, A reduced order model approach to inverse scattering in lossy layered media, Journal of Scientic Computing, V. 89, N1, pp. 136,2021 [2] Druskin, Vladimir and Knizhnerman, Leonid, Gaussian spectral rules for the three-point second dierences: I. A two-point positive denite problem in a semi-innite domain, SIAM Journal on Numerical Analysis, V. 37, N 2, pp.403422, 1999 [3] Druskin, Vladimir and Mamonov, Alexander V and Zaslavsky, Mikhail, Distance preserving model order reduction of graph-Laplacians and cluster analysis, Druskin, Vladimir and Mamonov, Alexander V and Zaslavsky, Mikhail, Journal of Scientic Computing, V. 90, N 1, pp 130, 2022 [4] Druskin, Vladimir and Moskow, Shari and Zaslavsky, Mikhail LippmannSchwingerLanczos algorithm for inverse scattering problems, Inverse Problems, V. 37, N. 7, 2021, [5] Mark Adolfovich Nudelman The Krein String and Characteristic Functions of Maximal Dissipative Operators, Journal of Mathematical Sciences, 2004, V 124, pp 49184934 Go back to Plenary Speakers Go back to Speakers Go back 
    more » « less
  3. The classic graphical Cheeger inequalities state that if $M$ is an $n\times n$ \emph{symmetric} doubly stochastic matrix, then \[ \frac{1-\lambda_{2}(M)}{2}\leq\phi(M)\leq\sqrt{2\cdot(1-\lambda_{2}(M))} \] where $\phi(M)=\min_{S\subseteq[n],|S|\leq n/2}\left(\frac{1}{|S|}\sum_{i\in S,j\not\in S}M_{i,j}\right)$ is the edge expansion of $M$, and $\lambda_{2}(M)$ is the second largest eigenvalue of $M$. We study the relationship between $\phi(A)$ and the spectral gap $1-\re\lambda_{2}(A)$ for \emph{any} doubly stochastic matrix $A$ (not necessarily symmetric), where $\lambda_{2}(A)$ is a nontrivial eigenvalue of $A$ with maximum real part. Fiedler showed that the upper bound on $\phi(A)$ is unaffected, i.e., $\phi(A)\leq\sqrt{2\cdot(1-\re\lambda_{2}(A))}$. With regards to the lower bound on $\phi(A)$, there are known constructions with \[ \phi(A)\in\Theta\left(\frac{1-\re\lambda_{2}(A)}{\log n}\right), \] indicating that at least a mild dependence on $n$ is necessary to lower bound $\phi(A)$. In our first result, we provide an \emph{exponentially} better construction of $n\times n$ doubly stochastic matrices $A_{n}$, for which \[ \phi(A_{n})\leq\frac{1-\re\lambda_{2}(A_{n})}{\sqrt{n}}. \] In fact, \emph{all} nontrivial eigenvalues of our matrices are $0$, even though the matrices are highly \emph{nonexpanding}. We further show that this bound is in the correct range (up to the exponent of $n$), by showing that for any doubly stochastic matrix $A$, \[ \phi(A)\geq\frac{1-\re\lambda_{2}(A)}{35\cdot n}. \] As a consequence, unlike the symmetric case, there is a (necessary) loss of a factor of $n^{\alpha}$ for $\frac{1}{2}\leq\alpha\leq1$ in lower bounding $\phi$ by the spectral gap in the nonsymmetric setting. Our second result extends these bounds to general matrices $R$ with nonnegative entries, to obtain a two-sided \emph{gapped} refinement of the Perron-Frobenius theorem. Recall from the Perron-Frobenius theorem that for such $R$, there is a nonnegative eigenvalue $r$ such that all eigenvalues of $R$ lie within the closed disk of radius $r$ about $0$. Further, if $R$ is irreducible, which means $\phi(R)>0$ (for suitably defined $\phi$), then $r$ is positive and all other eigenvalues lie within the \textit{open} disk, so (with eigenvalues sorted by real part), $\re\lambda_{2}(R) more » « less
  4. Learning node representations for networks has attracted much attention recently due to its effectiveness in a variety of applications. This paper focuses on learning node representations for heterogeneous star networks, which have a center node type linked with multiple attribute node types through different types of edges. In heterogeneous star networks, we observe that the training order of different types of edges affects the learning performance signiffcantly. Therefore we study learning curricula for node representation learning in heterogeneous star networks, i.e., learning an optimal sequence of edges of different types for the node representation learning process. We formulate the problem as a Markov decision process, with the action as selecting a speciffc type of edges for learning or terminating the training process, and the state as the sequence of edge types selected so far. The reward is calculated as the performance on external tasks with node representations as features, and the goal is to take a series of actions to maximize the cumulative rewards. We propose an approach based on deep reinforcement learning for this problem. Our approach leverages LSTM models to encode states and further estimate the expected cumulative reward of each state-action pair, which essentially measures the long-term performance of different actions at each state. Experimental results on real-world heterogeneous star networks demonstrate the effectiveness and effciency of our approach over competitive baseline approaches. 
    more » « less
  5. The origins of evolutionary games are rooted in both economics and animal behaviour, but economics has, until recently, focused primarily on humans. Although historically, specific games were used in targeted circumstances with non-human species (i.e. the Prisoner's Dilemma), experimental economics has been increasingly recognized as a valuable method for directly comparing both the outcomes of economic decisions and their underlying mechanisms across species, particularly in comparison with humans, thanks to the structured procedures that allow for them to be instantiated across a variety of animals. So far, results in non-human primates suggest that even when outcomes are shared, underlying proximate mechanisms can vary substantially. Intriguingly, in some contexts non-human primates more easily find a Nash equilibrium than do humans, possibly owing to their greater willingness to explore the parameter space, but humans excel at more complex outcomes, such as alternating between two Nash equilibria, even when deprived of language or instruction, suggesting potential mechanisms that humans have evolved to allow us to solve complex social problems. We consider what these results suggest about the evolution of economic decision-making and suggest future directions, in particular the need to expand taxonomic diversity, to expand this promising approach. This article is part of the theme issue ‘Half a century of evolutionary games: a synthesis of theory, application and future directions'. 
    more » « less