AbstractWhile there are many studies documenting female mating preferences across taxa, male mate choice remains relatively understudied. Male mate choice often develops when there is variation in female quality and thus the fitness benefits of mating with particular females. Specifically, males tend to prefer females with traits that confer direct fitness benefits such as large body size, which may be linked with high fecundity. Prior work has shown that females of the strawberry poison frog,Oophaga pumilio, prefer males bearing certain coloration (most often the female’s own color), and that this preference can be learned through maternal imprinting. Females have been shown to prefer larger males as well. Here we test whether similar mate preferences for color and size exist in males of this species using two-way choice tests on captive bred maleO. pumilio. In each test focal males were placed in an arena with two stimulus females: either both of the same size but differing in color, or both of the same color but differing in size. We found only weak evidence for behavioral biases toward particular colors and no evidence for biases toward larger females, suggesting that males ofO. pumiliodo not predictably choose mates based on these female traits. Despite several aspects of their natural history that suggest males have reasons to be choosy, our findings suggest that the cost of mate rejection may outweigh any fitness benefits derived from being selective of mates. Studies of additional populations, ideally conducted on wild individuals, are needed to better understand the range of conditions under which males may exhibit mate choice and the types of traits on which they base these choices. Significance statementTo fully understand the fitness landscapes and evolutionary trajectories that result from sexual selection, we need to understand when and how the mate preferences of the two sexes act and interact. While female mate choice has been widely studied, male mate choice remains poorly understood. To help bridge this gap, we studied male mate preferences in the strawberry poison frogOophaga pumilio, a small brightly colored frog for which female preferences for male color and size have been well-documented. We found no evidence that maleO. pumilioexhibit mate preferences based on female size and little evidence for male mate preferences based on female color. This is surprising given that larger females are often more fecund, maleO. pumilioare known to exhibit color-based behavioral biases in the context of male-male competition, and both sexes provide parental care.
more »
« less
Moth Mating: Modeling Female Pheromone Calling and Male Navigational Strategies to Optimize Reproductive Success
Male and female moths communicate in complex ways to search for and to select a mate. In a process termed calling, females emit small quantities of pheromones, generating plumes that spread in the environment. Males detect the plume through their antennae and navigate toward the female. The reproductive process is marked by female choice and male–male competition, since multiple males aim to reach the female but only the first can mate with her. This provides an opportunity for female selection on male traits such as chemosensitivity to pheromone molecules and mobility. We develop a mathematical framework to investigate the overall mating likelihood, the mean first arrival time, and the quality of the first male to reach the female for four experimentally observed female calling strategies unfolding over a typical one-week mating period. We present both analytical solutions of a simplified model as well as results from agent-based numerical simulations. Our findings suggest that, by adjusting call times and the amount of released pheromone, females can optimize the mating process. In particular, shorter calling times and lower pheromone titers at onset of the mating period that gradually increase over time allow females to aim for higher-quality males while still ensuring that mating occurs by the end of the mating period.
more »
« less
- PAR ID:
- 10240316
- Date Published:
- Journal Name:
- Applied Sciences
- Volume:
- 10
- Issue:
- 18
- ISSN:
- 2076-3417
- Page Range / eLocation ID:
- 6543
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
While thought to be widely used for animal communication, substrate-borne vibration is relatively unexplored compared to other modes of communication. Substrate-borne vibrations are important for mating decisions in many orthopteran species, yet substrate-borne vibration has not been documented in the Pacific field cricket Teleogryllus oceanicus . Male T. oceanicus use wing stridulation to produce airborne calling songs to attract females and courtship songs to entice females to mate. A new male morph has been discovered, purring crickets, which produce much quieter airborne calling and courtship songs than typical males. Purring males are largely protected from a deadly acoustically orienting parasitoid fly, and they are still able to attract female crickets for mating though typical calling song is more effective for attracting mates. Here, we document the first record of substrate-borne vibration in both typical and purring male morphs of T. oceanicus . We used a paired microphone and accelerometer to simultaneously record airborne and substrate-borne sounds produced during one-on-one courtship trials in the field. Both typical and purring males produced substrate-borne vibrations during courtship that temporally matched the airborne acoustic signal, suggesting that the same mechanism (wing movement) produces both sounds. As previously established, in the airborne channel, purring males produce lower amplitude but higher peak frequency songs than typical males. In the vibrational channel, purring crickets produce songs that are higher in peak frequency than typical males, but there is no difference in amplitude between morphs. Because louder songs (airborne) are preferred by females in this species, the lack of difference in amplitude between morphs in the substrate-borne channel could have implications for mating decisions. This work lays the groundwork for investigating variation in substrate-borne vibrations in T. oceanicus , intended and unintended receiver responses to these vibrations, and the evolution of substrate-borne vibrations over time in conjunction with rapid evolutionary shifts in the airborne acoustic signal.more » « less
-
While male mate choice has received sparse attention in comparison to female choice, it occurs often in insects. In addition, male insects may preferentially allocate sperm and ejaculate in response to female quality. Previous research indicates that male Bicyclus anynana butterflies can learn mate preference through prior exposure to females, though naïve males mate randomly. It is unclear whether this preference learning may also influence male sperm and ejaculate allocation after mate selection, or whether males have cryptic mate preference for female wing patterns independent of preference learning. Here we test whether B. anynana males adjust their sperm and ejaculate allocation in response to a learned preference. We also assess whether males exhibit an innate cryptic preference and adjust their sperm and ejaculate in response to female wing pattern. We compared number of eggs laid by females and spermatophore (male butterfly ejaculate) weight in four no-choice treatments: naïve male butterflies (having no prior exposure to females), paired with a 2 or 0-spot female, and experienced male butterflies (having a previous three-hour interaction with a 0-spot female), paired with a 2 or 0-spot female. All females used were naturally 2-spot females, 0-spot females had artificially blocked spots. We found that 0-spot females laid significantly more eggs than 2-spot females, independent of male experience. There was no effect of female phenotype or male experience on spermatophore weight. Our findings suggest that male B. anynana have an innate cryptic preference for 0-spot females, which has been shown in other studies to only be seen as a pre-copulatory preference when enhanced by early experience.more » « less
-
Applegate, Roger (Ed.)Abstract - Odocoileus virginianus (White-tailed Deer) are social animals that thrive in rural and urban settings. Scraping behavior is an olfactory reproductive communication used by White-tailed Deer to establish breeding networks. Male scraping is a complex scent-marking behavior which advertises sociosexual status and location to potential females as well as to competing males. Female scraping behavior is thought to be an estrus signal alerting males during times of optimal fertility. This study describes a new method to examine White-tailed Deer mating systems using social network analyses of scraping behavior using an urban population of White-tailed Deer as a model. First, we validated the scraping behavior at our study site in Tougaloo, MS, during the 2019–2020 breeding season. Using remote monitoring, we continuously documented scraping behaviors over 8 different scrape-site locations and found similar behavioral, temporal, and spatial patterns in our urban breeding network as reported in rural and captive deer studies. Next, we describe methods detailing how social network analyses can reveal sociality, dominance, importance, and social structure within male scraping networks. Using centrality measures, we were able to rank dominant male influencers, anticipate social conflict among rivals, and made predictions regarding the spread of communicable diseases through a male scraping network. We also detail network analyses combining both male and female scraping behavior to reveal a glimpse into the complexity of breeding networks. Using network measures, we were able to rank males based on competitiveness and female preference. Lastly, we generated a theoretical breeding network to explore female sociability, competitiveness, preference, and mate choice. Taken together, this work describes a new method using scraping network analysis to investigate the complexity of White-tailed Deer breeding networks. This work also demonstrates the future applications of this method for predicting the spread of communicable diseases and for predicting mate selection within White-tailed Deer mating systems.more » « less
-
Visual and auditory signals are well-established components of avian courtship, but the role of chemical signaling remains poorly understood, particularly in mating systems with elaborate courtship displays. To test how chemical cues influence mating behavior we conducted two experiments in the lance-tailed manakin (Chiroxiphia lanceolata). First, in a field experiment, we tested the response of free-living males and females to manipulation of chemical cues at male display perches by cleaning the perches with ethanol or a dry cloth (control) and quantified a potential chemical signaling behavior (bill-wiping) in response to experimental manipulation. During bouts of dance perch maintenance and displays with a female present (i.e., activity relevant to female mate choice) males increased bill-wiping behavior during initial ethanol treatment periods. We also detected carryover effects of the ethanol treatment; in later treatment periods males bill-wiped more when the prior treatment was ethanol. The likelihood of a female either revisiting a display area or copulating with a male was unrelated to experimental treatment. Next, in captive trials, we assessed female preference for olfactory cues from males that differed in their genetic diversity, a trait previously identified as relevant to female mate choice. In contrast to similar trials in other bird species, females showed no clear preference. Together, these results provide some evidence for chemical signaling by males at display perches, but it remains unclear what information chemical cues convey.more » « less
An official website of the United States government

