skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Markov Chains Through Semigroup Graph Expansions (A Survey)
We review the recent approach to Markov chains using the Karnofksy-Rhodes and McCammond expansions in semigroup theory by the authors and illustrate them by two examples.  more » « less
Award ID(s):
1760329 1764153
PAR ID:
10248945
Author(s) / Creator(s):
;
Editor(s):
Romeo, P.G.; Volkov, M.V.; Rajan, A.R.
Date Published:
Journal Name:
Semigroups, Categories, and Partial Algebras
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Spatial dataflow architectures (SDAs) are a promising and versatile accelerator platform. They are software-programmable and achieve near-ASIC performance and energy efficiency, beating CPUs by orders of magnitude. Unfortunately, many SDAs struggle to efficiently implement irregular computations because they suffer from an abstraction inversion: they fail to capture coarse-grain dataflow semantics in the application — namely asynchronous communication, pipelining, and queueing — that are naturally supported by the dataflow execution model and existing SDA hardware. Ripple is a language and architecture that corrects the abstraction inversion by preserving dataflow semantics down the stack. Ripple provides asynchronous iterators, shared-memory atomics, and a familiar task-parallel interface to concisely express the asynchronous pipeline parallelism enabled by an SDA. Ripple efficiently implements deadlock-free, asynchronous task communication by exposing hardware token queues in its ISA. Across nine important workloads, compared to a recent ordered-dataflow SDA, Ripple shrinks programs by 1.9×, improves performance by 3×, increases IPC by 58%, and reduces dynamic instructions by 44%. 
    more » « less
  2. This paper provides a catalogue of the type specimens of lice (Insecta: Psocodea: Phthiraptera) held in the collection of the Field Museum of Natural History (FMNH), Chicago, Illinois, USA. There are 178 nominal species, four of which are represented by holotype only; 14 by holotype, allotype and paratypes; 29 by holotype and paratypes; 127 by paratypes only; three by neoparatypes, and one by paralectotype. The main goal of this type catalog is to make the louse type specimens and their metadata more readily available to biodiversity researchers. 
    more » « less
  3. Reflectance spectra provide integrative measures of plant phenotypes by capturing chemical, morphological, anatomical and architectural trait information. Here, we investigate the linkages between plant spectral variation, and spectral and resource-use complementarity that contribute to ecosystem productivity. In both a forest and prairie grassland diversity experiment, we delineated n -dimensional hypervolumes using wavelength bands of reflectance spectra to test the association between the spectral space occupied by individual plants and their growth, as well as between the spectral space occupied by plant communities and ecosystem productivity. We show that the spectral space occupied by individuals increased with their growth, and the spectral space occupied by plant communities increased with ecosystem productivity. Furthermore, ecosystem productivity was better explained by inter-individual spectral complementarity than by the large spectral space occupied by productive individuals. Our results indicate that spectral hypervolumes of plants can reflect ecological strategies that shape community composition and ecosystem function, and that spectral complementarity can reveal resource-use complementarity. 
    more » « less
  4. Kazarinoff, P. (Ed.)
    Different perspectives on the “Future of Work” can cause disconnections between the technician skills needed by industry and those taught by the educational programs preparing technicians to participate in Industry 4.0 (I4.0) manufacturing environments. Variations in the methodology of identifying, grouping, and describing technical skills and skill areas are driven by variations in sources of information and the industries and locales they represent. This paper summarizes for the ATE audience a FLATE (Florida Advanced Technological Education Center of Excellence) project [1]—Technician Future of Work Issues Caucus for Florida Community Colleges and Manufacturers (DUE 1939173)—that compared the skills needed by Florida manufacturers to the skills taught at two-year Florida colleges, and then mapped those skills to the I4.0 skills identified by a national sampling of technology-focused industries carried out by the CORD project Preparing Technicians for the Future of Work (DUE 1839567) [2]. Specifically, the paper (i) reviews the I4.0 technology skills identified by the Boston Consulting Group; (ii) presents I4.0 skill interactions with the results from the CORD and FLATE projects; and (iii) maps Florida-identified technician skill needs to the Cross-Disciplinary STEM Core skills identified at the national level by the CORD project. The paper also summarizes the process for integration of the I4.0 technology-related skills into the AS engineering technology program offered by twenty-two colleges in the Florida State College System [3,4,5]. 
    more » « less
  5. Increasing soil salinity and degraded irrigation water quality are major challenges for agriculture. This study investigated the effects of irrigation water quality and incorporating compost (3% dry mass in soil) on minimizing soil salinization and promoting sustainable cropping systems. A greenhouse study used brackish water (electrical conductivity of 2010 µS/cm) and agricultural water (792 µS/cm) to irrigate Dundale pea and clay loam soil. Compost treatment enhanced soil water retention with soil moisture content above 0.280 m3/m3, increased plant carbon assimilation by ~30%, improved plant growth by >50%, and reduced NO3− leaching from the soil by 16% and 23.5% for agricultural and brackish water irrigation, respectively. Compared to no compost treatment, the compost-incorporated soil irrigated with brackish water showed the highest plant growth by increasing plant fresh weight by 64%, dry weight by 50%, root length by 121%, and plant height by 16%. Compost treatment reduced soil sodicity during brackish water irrigation by promoting the leaching of Cl− and Na+ from the soil. Compost treatment provides an environmentally sustainable approach to managing soil salinity, remediating the impact of brackish water irrigation, improving soil organic matter, enhancing the availability of water and nutrients to plants, and increasing plant growth and carbon sequestration potential. 
    more » « less