skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The coupling of experiments with density functional theory in the studies of the electrochemical hydrogen evolution reaction
The hydrogen evolution reaction (HER) is the cathodic reaction of water electrolysis, which is a cleaner and more sustainable approach to produce hydrogen gas compared to the conventional steam reforming method. Electrocatalysts are essential to lower the overpotential of the HER and, thus, the overall energy cost of water electrolysis. The search for high performance HER catalysts has been facilitated by coupling experiments with first principles calculation, e.g. , density functional theory (DFT). This article will first review the factors determining the performance of HER electrocatalysts. Then, we will discuss the power of coupling experiments with DFT in obtaining insights into the fundamentals of the HER, including explaining experimental results and revealing reaction mechanisms, and facilitating the development of new HER electrocatalysts. The last section of this review focuses on the limitations and progress of coupling experiments with DFT from three perspectives: experimental measurements, characterization and DFT simulation. Finally, we share some opinions about how to better couple experiments with DFT.  more » « less
Award ID(s):
1904547
PAR ID:
10249248
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Materials Chemistry A
Volume:
8
Issue:
18
ISSN:
2050-7488
Page Range / eLocation ID:
8783 to 8812
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Hydrazine‐assisted water electrolysis offers a feasible path for low‐voltage green hydrogen production. Herein, the design and synthesis of ultrathin RhRu0.5‐alloy wavy nanowires as bifunctional electrocatalysts for both the anodic hydrazine oxidation reaction (HzOR) and the cathodic hydrogen evolution reaction (HER) is reported. It is shown that the RhRu0.5‐alloy wavy nanowires can achieve complete electrooxidation of hydrazine with a low overpotential and high mass activity, as well as improved performance for the HER. The resulting RhRu0.5bifunctional electrocatalysts enable, high performance hydrazine‐assisted water electrolysis delivering a current density of 100 mA cm−2at an ultralow cell voltage of 54 mV and a high current density of 853 mA cm−2at a cell voltage of 0.6 V. The RhRu0.5 electrocatalysts further demonstrate a stable operation at a high current density of 100 mA cm−2for 80 hours of testing period with little irreversible degradation. The overall performance greatly exceeds that of the previously reported hydrazine‐assisted water electrolyzers, offering a pathway for efficiently converting hazardous hydrazine into molecular hydrogen. 
    more » « less
  2. null (Ed.)
    The alkaline hydrogen evolution reaction (A-HER) holds great promise for clean hydrogen fuel generation but its practical utilization is severely hindered by the sluggish kinetics for water dissociation in alkaline solutions. Traditional ways to improve the electrochemical kinetics for A-HER catalysts have been focusing on surface modification, which still can not meet the demanding requirements for practical water electrolysis because of catalyst surface deactivation. Herein, we report an interior modification strategy to significantly boost the A-HER performance. Specifically, a trace amount of Pt was doped in the interior Co 2 P (Pt–Co 2 P) to introduce a stronger dopant–host interaction than that of the surface-modified catalyst. Consequently, the local chemical state and electronic structure of the catalysts were adjusted to improve the electron mobility and reduce the energy barriers for hydrogen adsorption and H–H bond formation. As a proof-of-concept, the interior-modified Pt–Co 2 P shows a reduced onset potential at near-zero volts for the A-HER, low overpotentials of 2 mV and 58 mV to achieve 10 and 100 mA cm −2 , and excellent durability for long-term utilization. The interior-modified Pt–Co 2 P delivers superior A-HER performance to Pt/C and other state-of-the-art electrocatalysts. This work will open a new avenue for A-HER catalyst design. 
    more » « less
  3. null (Ed.)
    Hydrogen production from water electrolysis with renewable energy input has been the focus of tremendous attention, as hydrogen is widely advocated as a clean energy carrier. In order to realize large-scale hydrogen generation from water splitting, it is essential to develop competent and robust electrocatalysts that will substantially decrease the overpotential requirement and improve energy efficiency. Recent advances in electrocatalyst design reveal that interfacial engineering is an effective approach in tuning the adsorption–desorption abilities of key catalytic intermediates on active sites, accelerating electron transfer, and stabilizing the active sites for long-term operation. Consequently, a large number of hybrid electrocatalysts consisting of metal/compound interfaces have been demonstrated to exhibit superior performance for electrocatalytic hydrogen evolution from water. This article highlights examples of these hybrid electrocatalysts, including noble metal and non-noble metal candidates interfaced with a variety of compounds. Specific emphasis is placed on the synthetic methods, reaction mechanisms, and electrocatalytic activities, which are envisioned to inspire the design and development of further improved electrocatalysts for hydrogen evolution from water splitting on an industrial scale. 
    more » « less
  4. Energy harvesting from solar and water has created ripples in materials energy research for the last several decades, complemented by the rise of Hydrogen as a clean fuel. Among these, water electrolysis leading to generation of oxygen and hydrogen, has been one of the most promising routes towards sustainable alternative energy generation and storage, with applications ranging from metal-​air batteries, fuel cells, to solar-​to-​fuel energy conversion systems. In fact, solar water splitting is one of the most promising method to produce Hydrogen without depleting fossil-​fuel based natural resources. However, the efficiency and practical feasibility of water electrolysis is limited by the anodic oxygen evolution reaction (OER)​, which is a kinetically sluggish, electron-​intensive uphill reaction. A slow OER process also slows the other half- cell reaction, i.e. the hydrogen evolution reaction (HER) at the cathode. Hence, designing efficient catalysts for OER process from earth-​abundant resources has been one of the primary concerns for advancing solar water splitting. In the Nath group we have focused on transition metal chalcogenides as efficient OER electrocatalysts. We have proposed the idea that these chalcogenides, specifically, selenides and tellurides will show much better OER catalytic activity due to increasing covalency around the catalytically active transition metal site, compared to the oxides caused by decreasing electronegativity of the anion, which in turn leads to variation of chem. potential around the transition metal center, [e.g. lowering the Ni 2+ -​-​> Ni 3+ oxidn. potential in Ni-​based catalysts where Ni 3+ is the actually catalytically active species]​. Based on such hypothesis, we have synthesized a plethora of transition metal selenides including those based on Ni, Ni-​Fe, Co, and Ni-​Co, which show high catalytic efficiency characterized by low onset potential and overpotential at 10 mA​/cm 2 [Ni 3 Se 2 - 200 - 290 mV; Co 7 Se 8 - 260 mV; FeNi 2 Se 4 -​NrGO - 170 mV (NrGO - N-​doped reduced graphene oxide)​; NiFe 2 Se 4 - 210 mV; CoNi 2 Se 4 - 190 mV; Ni 3 Te 2 - 180 mV]​. 
    more » « less
  5. null (Ed.)
    To combat the global problem of carbon dioxide emissions, hydrogen is the desired energy vector for the transition to environmentally benign fuel cell power. Water electrolysis (WE) is the major technology for sustainable hydrogen production. Despite the use of renewable solar and wind power as sources of electricity, one of the main barriers for the widespread implementation of WE is the scarcity and high cost of platinum group metals (pgms) that are used to catalyse the cathodic hydrogen evolution reaction (HER) and the anodic oxygen evolution reaction (OER). Hence, the critical pgm-based catalysts must be replaced with more sustainable alternatives for WE technologies to become commercially viable. This critical review describes the state-of-the-art pgm-free materials used in the WE application, with a major focus on phosphides and borides. Several emerging classes of HER and OER catalysts are reviewed and detailed structure‐property correlations are comprehensively summarised. The influence of the crystallographic and electronic structures, morphology and bulk and surface chemistry of the catalysts on the activity towards OER and HER is discussed. 
    more » « less