skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ideas and perspectives: A strategic assessment of methane and nitrous oxide measurements in the marine environment
Abstract. In the current era of rapid climate change, accuratecharacterization of climate-relevant gas dynamics – namely production,consumption, and net emissions – is required for all biomes, especially thoseecosystems most susceptible to the impact of change. Marine environmentsinclude regions that act as net sources or sinks for numerous climate-activetrace gases including methane (CH4) and nitrous oxide (N2O). Thetemporal and spatial distributions of CH4 and N2O are controlledby the interaction of complex biogeochemical and physical processes. Toevaluate and quantify how these mechanisms affect marine CH4 andN2O cycling requires a combination of traditional scientificdisciplines including oceanography, microbiology, and numerical modeling.Fundamental to these efforts is ensuring that the datasets produced byindependent scientists are comparable and interoperable. Equally critical istransparent communication within the research community about the technicalimprovements required to increase our collective understanding of marineCH4 and N2O. A workshop sponsored by Ocean Carbon and Biogeochemistry (OCB)was organized to enhance dialogue and collaborations pertaining tomarine CH4 and N2O. Here, we summarize the outcomes from theworkshop to describe the challenges and opportunities for near-futureCH4 and N2O research in the marine environment.  more » « less
Award ID(s):
1851402 1850983 1847687
PAR ID:
10250873
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Biogeosciences
Volume:
17
Issue:
22
ISSN:
1726-4189
Page Range / eLocation ID:
5809 to 5828
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Major coastal upwelling systems are among the most productive marine ecosystems in the world. They contribute disproportionately to the cycling of carbon and nutrients in the ocean and influence marine biogeochemistry beyond their productive regions. Characterized by intense microbial respiration (both aerobic and anaerobic), major coastal upwelling systems are also hotspots for the production and outgassing of potent greenhouse gases (GHG) such as CO2, N2O, and CH4. Quantifying and understanding these roles in the context of a changing climate is therefore a subject of great interest. Here we provide a short synthesis of the current knowledge of the contributions of major coastal upwelling systems to the cycling of GHG. Despite variations within and among different systems, low-latitude coastal upwelling systems typically act as a net carbon source to the atmosphere, while those at higher latitudes function as weak sinks or remain neutral regarding atmospheric CO2. These systems also significantly contribute to oceanic N2O and CH4 emissions, although the extent of their contribution to the latter remains poorly constrained. We also overview recent and future changes to upwelling systems in the context of a warmer climate and discuss uncertainties and implications for GHG production. Although rapid coastal warming is anticipated in all major coastal upwelling systems, the future changes in upwelling-favorable winds and their implications within the context of increased stratification are uncertain. Finally, we examine the major challenges that impede our ability to accurately predict how major coastal upwelling systems will respond to future climate change, and present recommendations for future research to better capture ongoing changes and disentangle natural and forced variability. 
    more » « less
  2. Northern forest soils are vital for climate change mitigation since upland sandy soils favor the net consumption/oxidation of atmospheric methane (CH4). We are studying biogeochemical CH4 cycle processes in a Northern Forest (Howland Research Forest, Maine), where upland soils are interspersed with wetland (Sphagnum bog), and upland-wetland transition soils along with hummock-hollow microtopography. This complex mosaic of microsites with sources and sinks of CH4 is subjected to change under future wet climates projected for this region, with a potential for these forests to shift from a net CH4 sink to a net CH4 source. Net CH4 emissions in a wet climate can increase either by inhibiting methanotrophs or favoring methanogens, or both. Thus, quantifying underlying processes of gross CH4 production and consumption can reduce the uncertainty of CH4 sink/source estimation in this critical ecosystem. We have collected baseline soil data across the forest's landscape including Total Carbon and Total Nitrogen with the Elemental Analyzer, Gravimetric Soil Moisture, and pH. Furthermore, stable isotope dilution method will serve as a proxy for methanogenic and methanotrophic activities to quantify gross rates of CH4 production and consumption from a flooding (wet-up) experiment in Howland Forest. We will differentiate between CH4 consumption and production by measuring both the change in the amount of CH4 and the ratio between labeled and unlabeled CH4 in a closed system. We will analyze the stable C isotope in 13CH4 to determine gross rates of CH4 production and oxidation in situ and within laboratory incubations. The in situ stable isotope dilution technique will be compared with the gas push-pull method, to test the suitability of a simple, low cost method to quantify gross CH4 oxidation rates. Novel data obtained in this study will constrain CH4 cycle processes in a biogeochemical model to quantify CH4 source-sink potential in Northern Forests under current and future climatic conditions. 
    more » « less
  3. Carbon dioxide removal technologies such as bioenergy with carbon capture and storage (BECCS) are required if the effects of climate change are to be reversed over the next century. However, BECCS demands extensive land use change that may create positive or negative radiative forcing impacts upstream of the BECCS facility through changes to in situ greenhouse gas fluxes and land surface albedo. When quantifying these upstream climate impacts, even at a single site, different methods can give different estimates. Here we show how three common methods for estimating the net ecosystem carbon balance of bioenergy crops established on former grassland or former cropland can differ in their central estimates and uncertainty. We place these net ecosystem carbon balance forcings in the context of associated radiative forcings from changes to soil N2O and CH4 fluxes, land surface albedo, embedded fossil fuel use, and geologically stored carbon. Results from long term eddy covariance measurements, a soil and plant carbon inventory, and the MEMS 2 process-based ecosystem model all agree that establishing perennials such as switchgrass or mixed prairie on former cropland resulted in net negative radiative forcing (i.e., global cooling) of -26.5 to -39.6 fW m-2 over 100 years. Establishing these perennials on former grassland sites had similar climate mitigation impacts of -19.3 to -42.5 fW m-2. However, the largest climate mitigation came from establishing corn for BECCS on former cropland or grassland, with radiative forcings from -38.4 to -50.5 fW m-2, due to its higher plant productivity and therefore more geologically stored carbon. Our results highlight the strengths and limitations of each method for quantifying the field scale climate impacts of BECCS and show that utilizing multiple methods can increase confidence in the final radiative forcing estimates. 
    more » « less
  4. Abstract. Tidal salt marsh soils can be a dynamic source of greenhouse gases such ascarbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O),as well as sulfur-based trace gases such as carbon disulfide (CS2) anddimethylsulfide (DMS) which play roles in global climate and carbon–sulfurbiogeochemistry. Due to the difficulty in measuring trace gases in coastalecosystems (e.g., flooding, salinity), our current understanding is based onsnapshot instantaneous measurements (e.g., performed during daytime lowtide) which complicates our ability to assess the role of these ecosystemsfor natural climate solutions. We performed continuous, automatedmeasurements of soil trace gas fluxes throughout the growing season toobtain high-temporal frequency data and to provide insights into magnitudesand temporal variability across rapidly changing conditions such as tidalcycles. We found that soil CO2 fluxes did not show a consistent dielpattern, CH4, N2O, and CS2 fluxes were highly variable withfrequent pulse emissions (> 2500 %, > 10 000 %,and > 4500 % change, respectively), and DMS fluxes onlyoccurred midday with changes > 185 000 %. When we comparedcontinuous measurements with discrete temporal measurements (during daytime,at low tide), discrete measurements of soil CO2 fluxes were comparablewith those from continuous measurements but misrepresent the temporalvariability and magnitudes of CH4, N2O, DMS, and CS2.Discrepancies between the continuous and discrete measurement data result indifferences for calculating the sustained global warming potential (SGWP),mainly by an overestimation of CH4 fluxes when using discretemeasurements. The high temporal variability of trace gas fluxes complicatesthe accurate calculation of budgets for use in blue carbon accounting andearth system models. 
    more » « less
  5. Methane (CH4) and nitrous oxide (N2O) are major greenhouse gases that are predominantly generated by microbial activities in anoxic environments. N2O inhibition of methanogenesis has been reported, but comprehensive efforts to obtain kinetic information are lacking. Using the model methanogen Methanosarcina barkeri strain Fusaro and digester sludge-derived methanogenic enrichment cultures, we conducted growth yield and kinetic measurements and showed that micromolar concentrations of N2O suppress the growth of methanogens and CH4 production from major methanogenic substrate classes. Acetoclastic methanogenesis, estimated to account for two-thirds of the annual 1 billion metric tons of biogenic CH4, was most sensitive to N2O, with inhibitory constants (KI) in the range of 18–25 μM, followed by hydrogenotrophic (KI, 60–90 μM) and methylotrophic (KI, 110–130 μM) methanogenesis. Dissolved N2O concentrations exceeding these KI values are not uncommon in managed (i.e. fertilized soils and wastewater treatment plants) and unmanaged ecosystems. Future greenhouse gas emissions remain uncertain, particularly from critical zone environments (e.g. thawing permafrost) with large amounts of stored nitrogenous and carbonaceous materials that are experiencing unprecedented warming. Incorporating relevant feedback effects, such as the significant N2O inhibition on methanogenesis, can refine climate models and improve predictive capabilities. 
    more » « less