skip to main content


Title: Determining the leading-order contact term in neutrinoless double β decay
A bstract We present a method to determine the leading-order (LO) contact term contributing to the nn → ppe − e − amplitude through the exchange of light Majorana neutrinos. Our approach is based on the representation of the amplitude as the momentum integral of a known kernel (proportional to the neutrino propagator) times the generalized forward Compton scattering amplitude n ( p 1 ) n ( p 2 ) W + ( k ) → $$ p\left({p}_1^{\prime}\right)p\left({p}_2^{\prime}\right){W}^{-}(k) $$ p p 1 ′ p p 2 ′ W − k , in analogy to the Cottingham formula for the electromagnetic contribution to hadron masses. We construct model-independent representations of the integrand in the low- and high-momentum regions, through chiral EFT and the operator product expansion, respectively. We then construct a model for the full amplitude by interpolating between these two regions, using appropriate nucleon factors for the weak currents and information on nucleon-nucleon ( NN ) scattering in the 1 S 0 channel away from threshold. By matching the amplitude obtained in this way to the LO chiral EFT amplitude we obtain the relevant LO contact term and discuss various sources of uncertainty. We validate the approach by computing the analog I = 2 NN contact term and by reproducing, within uncertainties, the charge-independence-breaking contribution to the 1 S 0 NN scattering lengths. While our analysis is performed in the $$ \overline{\mathrm{MS}} $$ MS ¯ scheme, we express our final result in terms of the scheme-independent renormalized amplitude $$ {\mathcal{A}}_{\nu}\left(\left|\mathbf{p}\right|,\left|\mathbf{p}^{\prime}\right|\right) $$ A ν p p ′ at a set of kinematic points near threshold. We illustrate for two cutoff schemes how, using our synthetic data for $$ {\mathcal{A}}_{\nu } $$ A ν , one can determine the contact-term contribution in any regularization scheme, in particular the ones employed in nuclear-structure calculations for isotopes of experimental interest.  more » « less
Award ID(s):
2020275 1630782
NSF-PAR ID:
10251130
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2021
Issue:
5
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Scattering of high energy particles from nucleons probes their structure, as was done in the experiments that established the non-zero size of the proton using electron beams 1 . The use of charged leptons as scattering probes enables measuring the distribution of electric charges, which is encoded in the vector form factors of the nucleon 2 . Scattering weakly interacting neutrinos gives the opportunity to measure both vector and axial vector form factors of the nucleon, providing an additional, complementary probe of their structure. The nucleon transition axial form factor, F A , can be measured from neutrino scattering from free nucleons, ν μ n  →  μ − p and $${\bar{\nu }}_{\mu }p\to {\mu }^{+}n$$ ν ¯ μ p → μ + n , as a function of the negative four-momentum transfer squared ( Q 2 ). Up to now, F A ( Q 2 ) has been extracted from the bound nucleons in neutrino–deuterium scattering 3–9 , which requires uncertain nuclear corrections 10 . Here we report the first high-statistics measurement, to our knowledge, of the $${\bar{\nu }}_{\mu }\,p\to {\mu }^{+}n$$ ν ¯ μ p → μ + n cross-section from the hydrogen atom, using the plastic scintillator target of the MINERvA 11 experiment, extracting F A from free proton targets and measuring the nucleon axial charge radius, r A , to be 0.73 ± 0.17 fm. The antineutrino–hydrogen scattering presented here can access the axial form factor without the need for nuclear theory corrections, and enables direct comparisons with the increasingly precise lattice quantum chromodynamics computations 12–15 . Finally, the tools developed for this analysis and the result presented are substantial advancements in our capabilities to understand the nucleon structure in the weak sector, and also help the current and future neutrino oscillation experiments 16–20 to better constrain neutrino interaction models. 
    more » « less
  2. A bstract We calculate pp → ℓ + ν, ℓ − $$ \overline{\nu} $$ ν ¯ to $$ \mathcal{O} $$ O (1 / Λ 4 ) within the Standard Model Effective Field Theory (SMEFT) framework. In particular, we calculate the four-fermion contribution from dimension six and eight operators, which dominates at large center of mass energy. We explore the relative size of the $$ \mathcal{O} $$ O (1 / Λ 4 ) and $$ \mathcal{O} $$ O (1 / Λ 2 ) results for various kinematic regimes and assumptions about the Wilson coefficients. Results for Drell-Yan production pp → ℓ + ℓ − at $$ \mathcal{O} $$ O (1 / Λ 4 ) are also provided. Additionally, we develop the form for four fermion contact term contributions to pp → ℓ + ν, ℓ − $$ \overline{\nu} $$ ν ¯ , pp → ℓ + ℓ − of arbitrary mass dimension. This allows us to estimate the effects from even higher dimensional (dimension > 8) terms in the SMEFT framework. 
    more » « less
  3. Meila, Marina ; Zhang, Tong (Ed.)
    In the Correlation Clustering problem, we are given a complete weighted graph $G$ with its edges labeled as “similar" and “dissimilar" by a noisy binary classifier. For a clustering $\mathcal{C}$ of graph $G$, a similar edge is in disagreement with $\mathcal{C}$, if its endpoints belong to distinct clusters; and a dissimilar edge is in disagreement with $\mathcal{C}$ if its endpoints belong to the same cluster. The disagreements vector, $\mathbf{disagree}$, is a vector indexed by the vertices of $G$ such that the $v$-th coordinate $\mathbf{disagree}_v$ equals the weight of all disagreeing edges incident on $v$. The goal is to produce a clustering that minimizes the $\ell_p$ norm of the disagreements vector for $p\geq 1$. We study the $\ell_p$ objective in Correlation Clustering under the following assumption: Every similar edge has weight in $[\alpha\mathbf{w},\mathbf{w}]$ and every dissimilar edge has weight at least $\alpha\mathbf{w}$ (where $\alpha \leq 1$ and $\mathbf{w}>0$ is a scaling parameter). We give an $O\left((\frac{1}{\alpha})^{\frac{1}{2}-\frac{1}{2p}}\cdot \log\frac{1}{\alpha}\right)$ approximation algorithm for this problem. Furthermore, we show an almost matching convex programming integrality gap. 
    more » « less
  4. A bstract We analyze the New Physics sensitivity of a recently proposed method to measure the CP-violating $$ \mathcal{B} $$ B ( K S → μ + μ − ) ℓ =0 decay rate using K S − K L interference. We present our findings both in a model-independent EFT approach as well as within several simple NP scenarios. We discuss the relation with associated observables, most notably $$ \mathcal{B} $$ B ( K L → π 0 $$ \nu \overline{\nu} $$ ν ν ¯ ). We find that simple NP models can significantly enhance $$ \mathcal{B} $$ B ( K S → μ + μ − ) ℓ =0 , making this mode a very promising probe of physics beyond the standard model in the kaon sector. 
    more » « less
  5. Abstract The transverse-momentum $$(p_{\textrm{T}})$$ ( p T ) spectra of K $$^{*}(892)^{0}~$$ ∗ ( 892 ) 0 and $$\mathrm {\phi (1020)}~$$ ϕ ( 1020 ) measured with the ALICE detector up to $$p_{\textrm{T}} $$ p T  = 16 GeV/ c in the rapidity range $$-1.2< y < 0.3,$$ - 1.2 < y < 0.3 , in p–Pb collisions at the center-of-mass energy per nucleon–nucleon collision $$\sqrt{s_{\textrm{NN}}} = 5.02$$ s NN = 5.02  TeV are presented as a function of charged particle multiplicity and rapidity. The measured $$p_{\textrm{T}} $$ p T distributions show a dependence on both multiplicity and rapidity at low $$p_{\textrm{T}} $$ p T whereas no significant dependence is observed at high $$p_{\textrm{T}} $$ p T . A rapidity dependence is observed in the $$p_{\textrm{T}} $$ p T -integrated yield (d N /d y ), whereas the mean transverse momentum $$\left( \langle p_{\textrm{T}} \rangle \right) $$ ⟨ p T ⟩ shows a flat behavior as a function of rapidity. The rapidity asymmetry ( $$Y_{\textrm{asym}}$$ Y asym ) at low $$p_{\textrm{T}} $$ p T (< 5 GeV/ c ) is more significant for higher multiplicity classes. At high $$p_{\textrm{T}} $$ p T , no significant rapidity asymmetry is observed in any of the multiplicity classes. Both K $$^{*}(892)^{0}~$$ ∗ ( 892 ) 0 and $$\mathrm {\phi (1020)}~$$ ϕ ( 1020 ) show similar $$Y_{\textrm{asym}}$$ Y asym . The nuclear modification factor $$(Q_{\textrm{CP}})$$ ( Q CP ) as a function of $$p_{\textrm{T}} $$ p T shows a Cronin-like enhancement at intermediate $$p_{\textrm{T}} $$ p T , which is more prominent at higher rapidities (Pb-going direction) and in higher multiplicity classes. At high $$p_{\textrm{T}}$$ p T (> 5 GeV/ $$c$$ c ), the $$Q_{\textrm{CP}}$$ Q CP values are greater than unity and no significant rapidity dependence is observed. 
    more » « less