skip to main content


Title: CLUE: exact maximal reduction of kinetic models by constrained lumping of differential equations
Abstract Motivation Detailed mechanistic models of biological processes can pose significant challenges for analysis and parameter estimations due to the large number of equations used to track the dynamics of all distinct configurations in which each involved biochemical species can be found. Model reduction can help tame such complexity by providing a lower-dimensional model in which each macro-variable can be directly related to the original variables. Results We present CLUE, an algorithm for exact model reduction of systems of polynomial differential equations by constrained linear lumping. It computes the smallest dimensional reduction as a linear mapping of the state space such that the reduced model preserves the dynamics of user-specified linear combinations of the original variables. Even though CLUE works with non-linear differential equations, it is based on linear algebra tools, which makes it applicable to high-dimensional models. Using case studies from the literature, we show how CLUE can substantially lower model dimensionality and help extract biologically intelligible insights from the reduction. Availabilityand implementation An implementation of the algorithm and relevant resources to replicate the experiments herein reported are freely available for download at https://github.com/pogudingleb/CLUE. Supplementary information Supplementary data are available at Bioinformatics online.  more » « less
Award ID(s):
1853650 1760448 1853482
NSF-PAR ID:
10251738
Author(s) / Creator(s):
; ; ;
Editor(s):
Valencia, Alfonso
Date Published:
Journal Name:
Bioinformatics
ISSN:
1367-4803
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Detailed dynamical systems models used in life sciences may include dozens or even hundreds of state variables. Models of large dimension are not only harder from the numerical perspective (e.g., for parameter estimation or simulation), but it is also becoming challenging to derive mechanistic insights from such models. Exact model reduction is a way to address this issue by finding a self-consistent lower-dimensional projection of the corresponding dynamical system. A recent algorithm CLUE allows one to construct an exact linear reduction of the smallest possible dimension such that the fixed variables of interest are preserved. However, CLUE is restricted to systems with polynomial dynamics. Since rational dynamics occurs frequently in the life sciences (e.g., Michaelis-Menten or Hill kinetics), it is desirable to extend CLUE to the models with rational dynamics. In this paper, we present an extension of CLUE to the case of rational dynamics and demonstrate its applicability on examples from literature. Our implementation is available in version 1.5 of CLUE (https://github.com/pogudingleb/CLUE). 
    more » « less
  2. null (Ed.)
    Abstract Motivation The generalized linear mixed model (GLMM) is an extension of the generalized linear model (GLM) in which the linear predictor takes random effects into account. Given its power of precisely modeling the mixed effects from multiple sources of random variations, the method has been widely used in biomedical computation, for instance in the genome-wide association studies (GWASs) that aim to detect genetic variance significantly associated with phenotypes such as human diseases. Collaborative GWAS on large cohorts of patients across multiple institutions is often impeded by the privacy concerns of sharing personal genomic and other health data. To address such concerns, we present in this paper a privacy-preserving Expectation–Maximization (EM) algorithm to build GLMM collaboratively when input data are distributed to multiple participating parties and cannot be transferred to a central server. We assume that the data are horizontally partitioned among participating parties: i.e. each party holds a subset of records (including observational values of fixed effect variables and their corresponding outcome), and for all records, the outcome is regulated by the same set of known fixed effects and random effects. Results Our collaborative EM algorithm is mathematically equivalent to the original EM algorithm commonly used in GLMM construction. The algorithm also runs efficiently when tested on simulated and real human genomic data, and thus can be practically used for privacy-preserving GLMM construction. We implemented the algorithm for collaborative GLMM (cGLMM) construction in R. The data communication was implemented using the rsocket package. Availability and implementation The software is released in open source at https://github.com/huthvincent/cGLMM. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  3. null (Ed.)
    Nonlinear differential equations model diverse phenomena but are notoriously difficult to solve. While there has been extensive previous work on efficient quantum algorithms for linear differential equations, the linearity of quantum mechanics has limited analogous progress for the nonlinear case. Despite this obstacle, we develop a quantum algorithm for dissipative quadratic n-dimensional ordinary differential equations. Assuming R < 1 , where R is a parameter characterizing the ratio of the nonlinearity and forcing to the linear dissipation, this algorithm has complexity T 2 q   poly ( log ⁡ T , log ⁡ n , log ⁡ 1 / ϵ ) / ϵ , where T is the evolution time, ϵ is the allowed error, and q measures decay of the solution. This is an exponential improvement over the best previous quantum algorithms, whose complexity is exponential in T. While exponential decay precludes efficiency, driven equations can avoid this issue despite the presence of dissipation. Our algorithm uses the method of Carleman linearization, for which we give a convergence theorem. This method maps a system of nonlinear differential equations to an infinite-dimensional system of linear differential equations, which we discretize, truncate, and solve using the forward Euler method and the quantum linear system algorithm. We also provide a lower bound on the worst-case complexity of quantum algorithms for general quadratic differential equations, showing that the problem is intractable for R ≥ 2 . Finally, we discuss potential applications, showing that the R < 1 condition can be satisfied in realistic epidemiological models and giving numerical evidence that the method may describe a model of fluid dynamics even for larger values of R. 
    more » « less
  4. Background

    In systems biology, the dynamics of biological networks are often modeled with ordinary differential equations (ODEs) that encode interacting components in the systems, resulting in highly complex models. In contrast, the amount of experimentally available data is almost always limited, and insufficient to constrain the parameters. In this situation, parameter estimation is a very challenging problem. To address this challenge, two intuitive approaches are to perform experimental design to generate more data, and to perform model reduction to simplify the model. Experimental design and model reduction have been traditionally viewed as two distinct areas, and an extensive literature and excellent reviews exist on each of the two areas. Intriguingly, however, the intrinsic connections between the two areas have not been recognized.

    Results

    Experimental design and model reduction are deeply related, and can be considered as one unified framework. There are two recent methods that can tackle both areas, one based on model manifold and the other based on profile likelihood. We use a simple sum‐of‐two‐exponentials example to discuss the concepts and algorithmic details of both methods, and provide Matlab‐based code and implementation which are useful resources for the dissemination and adoption of experimental design and model reduction in the biology community.

    Conclusions

    From a geometric perspective, we consider the experimental data as a point in a high‐dimensional data space and the mathematical model as a manifold living in this space. Parameter estimation can be viewed as a projection of the data point onto the manifold. By examining the singularity around the projected point on the manifold, we can perform both experimental design and model reduction. Experimental design identifies new experiments that expand the manifold and remove the singularity, whereas model reduction identifies the nearest boundary, which is the nearest singularity that suggests an appropriate form of a reduced model. This geometric interpretation represents one step toward the convergence of experimental design and model reduction as a unified framework.

     
    more » « less
  5. The classical Hodgkin-Huxley (HH) point-neuron model of action potential generation is four-dimensional. It consists of four ordinary differential equations describing the dynamics of the membrane potential and three gating variables associated to a transient sodium and a delayed-rectifier potassium ionic currents. Conductance-based models of HH type are higher-dimensional extensions of the classical HH model. They include a number of supplementary state variables associated with other ionic current types, and are able to describe additional phenomena such as subthreshold oscillations, mixed-mode oscillations (subthreshold oscillations interspersed with spikes), clustering and bursting. In this manuscript we discuss biophysically plausible and phenomenological reduced models that preserve the biophysical and/or dynamic description of models of HH type and the ability to produce complex phenomena, but the number of effective dimensions (state variables) is lower. We describe several representative models. We also describe systematic and heuristic methods of deriving reduced models from models of HH type. 
    more » « less