The classical Hodgkin-Huxley (HH) point-neuron model of action potential generation is four-dimensional. It consists of four ordinary differential equations describing the dynamics of the membrane potential and three gating variables associated to a transient sodium and a delayed-rectifier potassium ionic currents. Conductance-based models of HH type are higher-dimensional extensions of the classical HH model. They include a number of supplementary state variables associated with other ionic current types, and are able to describe additional phenomena such as subthreshold oscillations, mixed-mode oscillations (subthreshold oscillations interspersed with spikes), clustering and bursting. In this manuscript we discuss biophysically plausible and phenomenological reduced models that preserve the biophysical and/or dynamic description of models of HH type and the ability to produce complex phenomena, but the number of effective dimensions (state variables) is lower. We describe several representative models. We also describe systematic and heuristic methods of deriving reduced models from models of HH type.
more »
« less
CLUE: exact maximal reduction of kinetic models by constrained lumping of differential equations
Abstract Motivation Detailed mechanistic models of biological processes can pose significant challenges for analysis and parameter estimations due to the large number of equations used to track the dynamics of all distinct configurations in which each involved biochemical species can be found. Model reduction can help tame such complexity by providing a lower-dimensional model in which each macro-variable can be directly related to the original variables. Results We present CLUE, an algorithm for exact model reduction of systems of polynomial differential equations by constrained linear lumping. It computes the smallest dimensional reduction as a linear mapping of the state space such that the reduced model preserves the dynamics of user-specified linear combinations of the original variables. Even though CLUE works with non-linear differential equations, it is based on linear algebra tools, which makes it applicable to high-dimensional models. Using case studies from the literature, we show how CLUE can substantially lower model dimensionality and help extract biologically intelligible insights from the reduction. Availabilityand implementation An implementation of the algorithm and relevant resources to replicate the experiments herein reported are freely available for download at https://github.com/pogudingleb/CLUE. Supplementary information Supplementary data are available at Bioinformatics online.
more »
« less
- PAR ID:
- 10251738
- Editor(s):
- Valencia, Alfonso
- Date Published:
- Journal Name:
- Bioinformatics
- ISSN:
- 1367-4803
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Nonlinear differential equations model diverse phenomena but are notoriously difficult to solve. While there has been extensive previous work on efficient quantum algorithms for linear differential equations, the linearity of quantum mechanics has limited analogous progress for the nonlinear case. Despite this obstacle, we develop a quantum algorithm for dissipative quadratic n-dimensional ordinary differential equations. Assuming R < 1 , where R is a parameter characterizing the ratio of the nonlinearity and forcing to the linear dissipation, this algorithm has complexity T 2 q poly ( log T , log n , log 1 / ϵ ) / ϵ , where T is the evolution time, ϵ is the allowed error, and q measures decay of the solution. This is an exponential improvement over the best previous quantum algorithms, whose complexity is exponential in T. While exponential decay precludes efficiency, driven equations can avoid this issue despite the presence of dissipation. Our algorithm uses the method of Carleman linearization, for which we give a convergence theorem. This method maps a system of nonlinear differential equations to an infinite-dimensional system of linear differential equations, which we discretize, truncate, and solve using the forward Euler method and the quantum linear system algorithm. We also provide a lower bound on the worst-case complexity of quantum algorithms for general quadratic differential equations, showing that the problem is intractable for R ≥ 2 . Finally, we discuss potential applications, showing that the R < 1 condition can be satisfied in realistic epidemiological models and giving numerical evidence that the method may describe a model of fluid dynamics even for larger values of R.more » « less
-
null (Ed.)Abstract Motivation The generalized linear mixed model (GLMM) is an extension of the generalized linear model (GLM) in which the linear predictor takes random effects into account. Given its power of precisely modeling the mixed effects from multiple sources of random variations, the method has been widely used in biomedical computation, for instance in the genome-wide association studies (GWASs) that aim to detect genetic variance significantly associated with phenotypes such as human diseases. Collaborative GWAS on large cohorts of patients across multiple institutions is often impeded by the privacy concerns of sharing personal genomic and other health data. To address such concerns, we present in this paper a privacy-preserving Expectation–Maximization (EM) algorithm to build GLMM collaboratively when input data are distributed to multiple participating parties and cannot be transferred to a central server. We assume that the data are horizontally partitioned among participating parties: i.e. each party holds a subset of records (including observational values of fixed effect variables and their corresponding outcome), and for all records, the outcome is regulated by the same set of known fixed effects and random effects. Results Our collaborative EM algorithm is mathematically equivalent to the original EM algorithm commonly used in GLMM construction. The algorithm also runs efficiently when tested on simulated and real human genomic data, and thus can be practically used for privacy-preserving GLMM construction. We implemented the algorithm for collaborative GLMM (cGLMM) construction in R. The data communication was implemented using the rsocket package. Availability and implementation The software is released in open source at https://github.com/huthvincent/cGLMM. Supplementary information Supplementary data are available at Bioinformatics online.more » « less
-
Abstract Earth system models (ESMs) have been rapidly developed in recent decades to advance our understanding of climate change‐carbon cycle feedback. However, those models are massive in coding, require expensive computational resources, and have difficulty in diagnosing their performance. It is highly desirable to develop ESMs with modularity and effective diagnostics. Toward these goals, we implemented a matrix approach to the Community Land Model version 5 (CLM5) to represent carbon and nitrogen cycles. Specifically, we reorganized 18 balance equations each for carbon and nitrogen cycles among the 18 vegetation pools in the original CLM5 into two matrix equations. Similarly, 140 balance equations each for carbon and nitrogen cycles among the 140 soil pools were reorganized into two additional matrix equations. The vegetation carbon and nitrogen matrix equations are connected to soil matrix equations via litterfall. The matrix equations fully reproduce simulations of carbon and nitrogen dynamics by the original model. The computational cost for forwarding simulation of the CLM5 matrix model was 26% more expensive than the original model, largely due to calculation of additional diagnostic variables, but the spin‐up computational cost was significantly saved. We showed a case study on modeled soil carbon storage under two forcing data sets to illustrate the diagnostic capability that the matrix approach uniquely offers to understand simulation results of global carbon and nitrogen dynamics. The successful implementation of the matrix approach to CLM5, one of the most complex land models, demonstrates that most, if not all, the biogeochemical models can be reorganized into the matrix form to gain high modularity, effective diagnostics, and accelerated spin‐up.more » « less
-
Summary We consider graphical models based on a recursive system of linear structural equations. This implies that there is an ordering, $$\sigma$$, of the variables such that each observed variable $$Y_v$$ is a linear function of a variable-specific error term and the other observed variables $$Y_u$$ with $$\sigma(u) < \sigma (v)$$. The causal relationships, i.e., which other variables the linear functions depend on, can be described using a directed graph. It has previously been shown that when the variable-specific error terms are non-Gaussian, the exact causal graph, as opposed to a Markov equivalence class, can be consistently estimated from observational data. We propose an algorithm that yields consistent estimates of the graph also in high-dimensional settings in which the number of variables may grow at a faster rate than the number of observations, but in which the underlying causal structure features suitable sparsity; specifically, the maximum in-degree of the graph is controlled. Our theoretical analysis is couched in the setting of log-concave error distributions.more » « less
An official website of the United States government

