skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Strategic testing approaches for targeted disease monitoring can be used to inform pandemic decision-making
More than 1.6 million Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) tests were administered daily in the United States at the peak of the epidemic, with a significant focus on individual treatment. Here, we show that objective-driven, strategic sampling designs and analyses can maximize information gain at the population level, which is necessary to increase situational awareness and predict, prepare for, and respond to a pandemic, while also continuing to inform individual treatment. By focusing on specific objectives such as individual treatment or disease prediction and control (e.g., via the collection of population-level statistics to inform lockdown measures or vaccine rollout) and drawing from the literature on capture–recapture methods to deal with nonrandom sampling and testing errors, we illustrate how public health objectives can be achieved even with limited test availability when testing programs are designed a priori to meet those objectives.  more » « less
Award ID(s):
2037885 1911962 2028301
PAR ID:
10251879
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
PLOS Biology
Volume:
19
Issue:
6
ISSN:
1545-7885
Page Range / eLocation ID:
e3001307
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Network analysis of infectious disease in wildlife can reveal traits or individuals critical to pathogen transmission and help inform disease management strategies. However, estimates of contact between animals are notoriously difficult to acquire. Researchers commonly use telemetry technologies to identify animal associations, but such data may have different sampling intervals and often captures a small subset of the population. The objectives of this study were to outline best practices for telemetry sampling in network studies of infectious disease by determining (a) the consequences of telemetry sampling on our ability to estimate network structure, (b) whether contact networks can be approximated using purely spatial contact definitions and (c) how wildlife spatial configurations may influence telemetry sampling requirements.We simulated individual movement trajectories for wildlife populations using a home range‐like movement model, creating full location datasets and corresponding ‘complete’ networks. To mimic telemetry data, we created ‘sample’ networks by subsampling the population (10%–100% of individuals) with a range of sampling intervals (every minute to every 3 days). We varied the definition of contact for sample networks, using either spatiotemporal or spatial overlap, and varied the spatial configuration of populations (random, lattice or clustered). To compare complete and sample networks, we calculated seven network metrics important for disease transmission and assessed mean ranked correlation coefficients and percent error between complete and sample network metrics.Telemetry sampling severely reduced our ability to calculate global node‐level network metrics, but had less impact on local and network‐level metrics. Even so, in populations with infrequent associations, high intensity telemetry sampling may still be necessary. Defining contact in terms of spatial overlap generally resulted in overly connected networks, but in some instances, could compensate for otherwise coarse telemetry data.By synthesizing movement and disease ecology with computational approaches, we characterized trade‐offs important for using wildlife telemetry data beyond ecological studies of individual movement, and found that careful use of telemetry data has the potential to inform network models. Thus, with informed application of telemetry data, we can make significant advances in leveraging its use for a better understanding and management of wildlife infectious disease. 
    more » « less
  2. Abstract The work described is motivated by an inability to extend central infrastructure for power and water to low-population-density areas of the Navajo Nation and elsewhere. It is estimated that 35% of the Navajo population haul water for household use, frequently from unregulated sources of poor initial quality. The proposed household-scale, solar-driven nanofiltration (NF) system designs are economically optimized to satisfy point-of-use water purification objectives. The systems also provide electrical energy for a degree of nighttime household illumination. Results support rational design of multiple-component purification systems consisting of solar panels, a high-pressure pump, NF membranes, battery storage and an electrical control unit subject to constraints on daily water treatment and excess energy generation. The results presented are conditional (based on initial water quality, membrane characteristics and geography) but can be adapted to satisfy alternative treatment objectives in alternate geographic, etc. settings. The unit costs of water and energy from an optimized system that provides 100 gpd (1 gallon is 3.78 L) and 2 kWh/day of excess electrical energy are estimated at $0.16 per 100 gallons of water treated and $0.26 per kWh of nighttime electrical energy delivered. Methods can be used to inform dispersed infrastructure design subject to alternate constraint sets in similarly remote areas. 
    more » « less
  3. Grueber, Catherine E (Ed.)
    Abstract Landscape genomics can harness environmental and genetic data to inform conservation decisions by providing essential insights into how landscapes shape biodiversity. The massive increase in genetic data afforded by the genomic era provides exceptional resolution for answering critical conservation genetics questions. The accessibility of genomic data for non‐model systems has also enabled a shift away from population‐based sampling to individual‐based sampling, which now provides accurate and robust estimates of genetic variation that can be used to examine the spatial structure of genomic diversity, population connectivity and the nature of environmental adaptation. Nevertheless, the adoption of individual‐based sampling in conservation genetics has been slowed due, in large part, to concerns over how to apply methods developed for population‐based sampling to individual‐based sampling schemes. Here, we discuss the benefits of individual‐based sampling for conservation and describe how landscape genomic methods, paired with individual‐based sampling, can answer fundamental conservation questions. We have curated key landscape genomic methods into a user‐friendly, open‐source workflow, which we provide as a new R package, A Landscape Genomics Analysis Toolkit in R (algatr). Thealgatrpackage includes novel added functionality for all of the included methods and extensive vignettes designed with the primary goal of making landscape genomic approaches more accessible and explicitly applicable to conservation biology. 
    more » « less
  4. SIR (Susceptible, Infected or Recovered) stochastic network models are commonly used to describe the progression of epidemics inside a network. A task of interest in epidemiology is to use these models to estimate the state evolution, both at an individual as well as a population level. In this paper, we propose using continual testing to improve the state estimation at the individual level. Our testing is inspired from entropy reduction principles and requires only a small number of tests. 
    more » « less
  5. null (Ed.)
    Wastewater treatment plants (WWTPs) receive a confluence of sewage containing antimicrobials, antibiotic resistant bacteria, antibiotic resistance genes (ARGs), and pathogens and thus are a key point of interest for antibiotic resistance surveillance. WWTP monitoring has the potential to inform with respect to the antibiotic resistance status of the community served as well as the potential for ARGs to escape treatment. However, there is lack of agreement regarding suitable sampling frequencies and monitoring targets to facilitate comparison within and among individual WWTPs. The objective of this study was to comprehensively evaluate patterns in metagenomic-derived indicators of antibiotic resistance through various stages of treatment at a conventional WWTP for the purpose of informing local monitoring approaches that are also informative for global comparison. Relative abundance of total ARGs decreased by ∼50% from the influent to the effluent, with each sampling location defined by a unique resistome (i.e., total ARG) composition. However, 90% of the ARGs found in the effluent were also detected in the influent, while the effluent ARG-pathogen taxonomic linkage patterns identified in assembled metagenomes were more similar to patterns in regional clinical surveillance data than the patterns identified in the influent. Analysis of core and discriminatory resistomes and general ARG trends across the eight sampling events (i.e., tendency to be removed, increase, decrease, or be found in the effluent only), along with quantification of ARGs of clinical concern, aided in identifying candidate ARGs for surveillance. Relative resistome risk characterization further provided a comprehensive metric for predicting the relative mobility of ARGs and likelihood of being carried in pathogens and can help to prioritize where to focus future monitoring and mitigation. Most antibiotics that were subject to regional resistance testing were also found in the WWTP, with the total antibiotic load decreasing by ∼40–50%, but no strong correlations were found between antibiotics and corresponding ARGs. Overall, this study provides insight into how metagenomic data can be collected and analyzed for surveillance of antibiotic resistance at WWTPs, suggesting that effluent is a beneficial monitoring point with relevance both to the local clinical condition and for assessing efficacy of wastewater treatment in reducing risk of disseminating antibiotic resistance. 
    more » « less