We consider scheduling in the M/G/1 queue with unknown job sizes. It is known that the Gittins policy minimizes mean response time in this setting. However, the behavior of the tail of response time under Gittins is poorly understood, even in the large-response-time limit. Characterizing Gittins’s asymptotic tail behavior is important because if Gittins has optimal tail asymptotics, then it simultaneously provides optimal mean response time and good tail performance. In this work, we give the first comprehensive account of Gittins’s asymptotic tail behavior. For heavy-tailed job sizes, we find that Gittins always has asymptotically optimal tail. The story for light-tailed job sizes is less clear-cut: Gittins’s tail can be optimal, pessimal, or in between. To remedy this, we show that a modification of Gittins avoids pessimal tail behavior, while achieving near-optimal mean response time.
more »
« less
The Gittins Policy is Nearly Optimal in the M/G/k under Extremely General Conditions
The Gittins scheduling policy minimizes the mean response in the single-server M/G/1 queue in a wide variety of settings. Most famously, Gittins is optimal when preemption is allowed and service requirements are unknown but drawn from a known distribution. Gittins is also optimal much more generally, adapting to any amount of available information and any preemption restrictions. However, scheduling to minimize mean response time in a multiserver setting, specifically the central-queue M/G/k, is a much more difficult problem. In this work we give the first general analysis of Gittins in the M/G/k. Specifically, we show that under extremely general conditions, Gittins's mean response time in the M/G/k is at most its mean response time in the M/G/1 plus an $O(łog(1/(1 - ρ)))$ additive term, where ρ is the system load. A consequence of this result is that Gittins is heavy-traffic optimal in the M/G/k if the service requirement distribution S satisfies $$\mathbfE [S^2(łog S)^+] < \infty$$. This is the most general result on minimizing mean response time in the M/G/k to date. To prove our results, we combine properties of the Gittins policy and Palm calculus in a novel way. Notably, our technique overcomes the limitations of tagged job methods that were used in prior scheduling analyses.
more »
« less
- PAR ID:
- 10251986
- Date Published:
- Journal Name:
- Proceedings of the ACM on Measurement and Analysis of Computing Systems
- Volume:
- 4
- Issue:
- 3
- ISSN:
- 2476-1249
- Page Range / eLocation ID:
- 1 to 29
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The shortest-remaining-processing-time (SRPT) scheduling policy has been extensively studied, for more than 50 years, in single-server queues with infinitely patient jobs. Yet, much less is known about its performance in multiserver queues. In this paper, we present the first theoretical analysis of SRPT in multiserver queues with abandonment. In particular, we consider the M/GI/s+GI queue and demonstrate that, in the many-sever overloaded regime, performance in the SRPT queue is equivalent, asymptotically in steady state, to a preemptive two-class priority queue where customers with short service times (below a threshold) are served without wait, and customers with long service times (above a threshold) eventually abandon without service. We prove that the SRPT discipline maximizes, asymptotically, the system throughput, among all scheduling disciplines. We also compare the performance of the SRPT policy to blind policies and study the effects of the patience-time and service-time distributions. This paper was accepted by Baris Ata, stochastic models & simulation.more » « less
-
measuring information freshness. AoI measures the time that elapsed since the last received update was generated. We consider the problem of minimizing average and peak AoI in wireless networks under general interference constraints. When fresh information is always available for transmission, we show that a stationary scheduling policy is peak age optimal. We also prove that this policy achieves average age that is within a factor of two of the optimal average age. In the case where fresh information is not always available, and packet/information generation rate has to be controlled along with scheduling links for transmission, we prove an important separation principle: the optimal scheduling policy can be designed assuming fresh information, and independently, the packet generation rate control can be done by ignoring interference. Peak and average AoI for discrete time G/Ber/1 queue is analyzed for the first time, which may be of independent interest.more » « less
-
Age of information (AoI) is a recently proposed metric for measuring information freshness. AoI measures the time that elapsed since the last received update was generated. We consider the problem of minimizing average and peak AoI in wireless networks under general interference constraints. When fresh information is always available for transmission, we show that a stationary scheduling policy is peak age optimal. We also prove that this policy achieves average age that is within a factor of two of the optimal average age. In the case where fresh information is not always available, and packet/information generation rate has to be controlled along with scheduling links for transmission, we prove an important separation principle: the optimal scheduling policy can be designed assuming fresh information, and independently, the packet generation rate control can be done by ignoring interference. Peak and average AoI for discrete time G/Ber/1 queue is analyzed for the first time, which may be of independent interest.more » « less
-
We consider a long-term average profit–maximizing admission control problem in an M/M/1 queuing system with unknown service and arrival rates. With a fixed reward collected upon service completion and a cost per unit of time enforced on customers waiting in the queue, a dispatcher decides upon arrivals whether to admit the arriving customer or not based on the full history of observations of the queue length of the system. Naor [Naor P (1969) The regulation of queue size by levying tolls. Econometrica 37(1):15–24] shows that, if all the parameters of the model are known, then it is optimal to use a static threshold policy: admit if the queue length is less than a predetermined threshold and otherwise not. We propose a learning-based dispatching algorithm and characterize its regret with respect to optimal dispatch policies for the full-information model of Naor [Naor P (1969) The regulation of queue size by levying tolls. Econometrica 37(1):15–24]. We show that the algorithm achieves an O(1) regret when all optimal thresholds with full information are nonzero and achieves an [Formula: see text] regret for any specified [Formula: see text] in the case that an optimal threshold with full information is 0 (i.e., an optimal policy is to reject all arrivals), where N is the number of arrivals.more » « less