skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Uncertainty and Cognitive Demand on Students’ Thinking in Science Classrooms
This study focuses on the kinds of uncertainty experienced by students in relation to the level and kind of students’ thinking during the implementation of a cognitively demanding science task. The Framework for K-12 Science Education together with the Next Generation Science Standards emphasize the integration of scientific knowledge with scientific practices as students try to figure out phenomena. During this process of sensemaking, students experience moments of uncertainty that are a key part of doing science and drive scientific pursuits. By examining video-records of a science lesson in which the teacher and the students worked on a cognitively demanding science task, and by analyzing students’ interviews about this lesson, we identify the types of uncertainty that students experienced during the implementation of this task across the trajectory of the lesson. Moving beyond an all or nothing approach to uncertainty, our analysis reveals different kinds of uncertainty that students can experience and presents cognitively demanding tasks as a means to integrate uncertainty into students’ experiences.  more » « less
Award ID(s):
1720587
PAR ID:
10252043
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
National Association for Research in Science Teaching Annual Meeting 2021
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The reform vision brought forth by the Framework for K-12 Science Education emphasizes the integration of scientific knowledge with scientific practices as students try to figure out a phenomenon. During this process of making sense of phenomenon, students experience moments of uncertainty which is important because scientific activity is driven by this need to manage uncertainty. Using cognitively demanding tasks in science classrooms presents a means to integrate uncertainty into students’ experiences. Our analysis of video records of science lessons during the implementation of chemistry tasks at different cognitive demand levels revealed how types of uncertainty that students experienced differed in these lessons and the ways in which uncertainty was evoked during the implementation of cognitively demanding science tasks. 
    more » « less
  2. null (Ed.)
    The reform vision brought forth by the Framework for K-12 Science Education emphasizes the integration of scientific knowledge with scientific practices as students try to figure out a phenomenon. During this process of making sense of phenomenon, students experience moments of uncertainty which is important because scientific activity is driven by this need to manage uncertainty. Using cognitively demanding tasks in science classrooms presents a means to integrate uncertainty into students’ experiences. Our analysis of video records of science lessons during the implementation of chemistry tasks at different cognitive demand levels revealed how types of uncertainty that students experienced differed in these lessons and the ways in which uncertainty was evoked during the implementation of cognitively demanding science tasks. 
    more » « less
  3. Abstract Recent instructional reforms in science education aim to change the way students engage in learning in the discipline, as they describe that students are to engage with disciplinary core ideas, crosscutting concepts, and the practices of science to make sense of phenomena (NRC, 2012). For such sensemaking to become a reality, there is a need to understand the ways in which students' thinking can be maintained throughout the trajectory of science lessons. Past research in this area tends to foreground either the curriculum or teachers' practices. We propose a more comprehensive view of science instruction, one that requires attention to teachers' practice, the instructional task, and students' engagement. In this study, by examining the implementation of the same lesson across three different classrooms, our analysis of classroom videos and artifacts of students' work revealed how the interaction of teachers' practices, students' intellectual engagement, and a cognitively demanding task together support rigorous instruction. Our analyses shed light on their interaction that shapes opportunities for students' thinking and sensemaking throughout the trajectory of a science lesson. The findings provide implications for ways to promote rigorous opportunities for students' learning in science classrooms. 
    more » « less
  4. Reform-based rigorous instruction which fosters all students’ thinking and sensemaking is possible; however, it is not yet prevalent in science classrooms. This study explored promoting rigorous instruction by enhancing students’ intellectual work through cognitively demanding tasks. We examined instruction during the five lessons in a science classroom. We found variations in students’ intellectual work across the lessons. Our analysis revealed that the instructional practices associated with promoting students’ engagement in rigorous thinking were consequential for promoting students’ epistemic agency. Thus, we argue that maintaining and enhancing demand on students’ intellectual engagement in cognitively demanding tasks requires the work of providing opportunities for students to learn science-as-practice by acting as epistemic agents. These findings can inform professional efforts regarding rigorous instruction. 
    more » « less
  5. null (Ed.)
    This paper will share the design of a learning environment that uses flight simulator-based activities designed to cognitively engage middle school students. The flight simulator provides an exciting, realistic, and engaging learning experience. It allows students to recognize the linkage between the concepts and application in real-world. Lesson plans were developed for several math and physics concepts integrating the flight simulator activities. To ensure buy-in for classroom implementation, the topics of these lessons were identified in consultation with the local middle school STEM teachers. Professional development on using the pedagogical approach was then provided to teachers from the middle schools that serve primarily underrepresented populations. Middle school students experienced the learning environment as part of a summer camp to deeply understand some science and math concepts. A quasi experimental between-subjects research design was used. Pre-post content and attitude instruments were utilized to collect data for determining the effectiveness of the approach. This paper provides an updated analysis (N = 50) combining the previously reported data from the 2017 camp and the implementation results of the summer 2018 camp. Results indicated statistically significant gains in students’ content knowledge and positive changes in attitudes of mainly female students towards science, technology, engineering and math. 
    more » « less