skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Algorithms for Detecting Nearby Loss of Generation Events for Decentralized Controls
The paper describes algorithms to screen real time frequency data for detecting nearby loss of generation events. Results from Fourier calculation are combined with other features to effectively distinguish a nearby loss of generation from similar remote disturbances. Nearby in this context usually refers to an event occurring around 50–100 miles from the measurement location. The proposed algorithm can be trained using pattern recognition tools like decision trees to enable smart devices including appliances like residential air conditioners and dryers to autonomously detect and estimate the source of large frequency disturbances. An area of application of this strategy is to actuate controls such as location targeted under frequency load shedding (UFLS) so that loads closest to a tripped generator are the most likely to shut down.  more » « less
Award ID(s):
1711521
PAR ID:
10253583
Author(s) / Creator(s):
;
Date Published:
Journal Name:
2021 IEEE Power and Energy Conference at Illinois (PECI)
Page Range / eLocation ID:
1 to 7
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Ocean ecosystems have spatiotemporal variability and dynamic complexity that require a long-term deployment of an autonomous underwater vehicle for data collection. A new generation of long-range autonomous underwater vehicles (LRAUVs), such as the Slocum glider and Tethys-class AUV, has emerged with high endurance, long-range, and energy-aware capabilities. These new vehicles provide an effective solution to study different oceanic phenomena across multiple spatial and temporal scales. For these vehicles, the ocean environment has forces and moments from changing water currents which are generally on the order of magnitude of the operational vehicle velocity. Therefore, it is not practical to generate a simple trajectory from an initial location to a goal location in an uncertain ocean, as the vehicle can deviate significantly from the prescribed trajectory due to disturbances resulted from water currents. Since state estimation remains challenging in underwater conditions, feedback planning must incorporate state uncertainty that can be framed into a stochastic energy-aware path planning problem. This article presents an energy-aware feedback planning method for an LRAUV utilizing its kinematic model in an underwater environment under motion and sensor uncertainties. Our method uses ocean dynamics from a predictive ocean model to understand the water flow pattern and introduces a goal-constrained belief space to make the feedback plan synthesis computationally tractable. Energy-aware feedback plans for different water current layers are synthesized through sampling and ocean dynamics. The synthesized feedback plans provide strategies for the vehicle that drive it from an environment’s initial location toward the goal location. We validate our method through extensive simulations involving the Tethys vehicle’s kinematic model and incorporating actual ocean model prediction data. 
    more » « less
  2. A semiconductor carrier profiling method utilizes a scanning tunneling microscope and shielded probe with an attached spectrum analyzer to measure power loss of a microwave frequency comb generated in a tunneling junction. From this power loss and by utilizing an equivalent circuit or other model, spreading resistance may be determined and carrier density from the spreading resistance. The methodology is non-destructive of the sample and allows scanning across the surface of the sample. By not being destructive, additional analysis methods, like deconvolution, are available for use. 
    more » « less
  3. Tropical cyclones impact estuaries via a variety of mechanisms including storm surge, flooding from precipitation, high winds, and strong wave action. Prior studies have documented disturbances caused by tropical cyclones, including prolonged periods of depressed salinity from high freshwater discharge and increased or decreased dissolved oxygen concentrations from increased loading of organic matter and/or nutrients. However, most studies of disturbance and recovery in estuaries have been limited to one or a few locations or storm events, limiting generalizations about tropical cyclone impacts and characteristic patterns of ecosystem response and recovery. We analyzed responses to 59 tropical cyclones across 19 estuaries in the eastern United States by applying a new method for detecting disturbance and recovery to long-term and high-frequency measurements of salinity and dissolved oxygen from NOAA’s National Estuarine Research Reserve System. We quantified disturbance occurrence, timing, recovery time, and severity. Salinity disturbances generally started earlier and lasted longer than dissolved oxygen disturbances. Estuaries usually recovered within days, but some disturbances lasted weeks or months. Recovery time was positively correlated with disturbance severity for both variables. Tropical cyclone properties (especially precipitation) and location characteristics were both related to disturbance characteristics. Our findings demonstrate the power of high-frequency, long-term, and cross-system data, when combined with appropriate statistical methods, for analyzing hurricanes across many estuaries to quantify disturbances. Estuaries are resilient to hurricanes for the variables and time periods considered. However, persistent impacts can potentially damage resources provided by estuaries, eroding future resilience if hurricanes become more frequent and severe. 
    more » « less
  4. Abstract Neutrinos from very nearby supernovae, such as Betelgeuse, are expected to generate more than ten million events over 10 s in Super-Kamokande (SK). At such large event rates, the buffers of the SK analog-to-digital conversion board (QBEE) will overflow, causing random loss of data that are critical for understanding the dynamics of the supernova explosion mechanism. In order to solve this problem, two new data-acquisition (DAQ) modules were developed to aid in the observation of very nearby supernovae. The first of these, the SN module, is designed to save only the number of hit photomultiplier tubes during a supernova burst and the second, the Veto module, prescales the high-rate neutrino events to prevent the QBEE from overflowing based on information from the SN module. In the event of a very nearby supernova, these modules allow SK to reconstruct the time evolution of the neutrino event rate from beginning to end using both QBEE and SN module data. This paper presents the development and testing of these modules together with an analysis of supernova-like data generated with a flashing laser diode. We demonstrate that the Veto module successfully prevents DAQ overflows for Betelgeuse-like supernovae as well as the long-term stability of the new modules. During normal running the Veto module is found to issue DAQ vetos a few times per month resulting in a total dead-time less than 1 ms, and does not influence ordinary operations. Additionally, using simulation data we find that supernovae closer than 800 pc will trigger the Veto module, resulting in a prescaling of the observed neutrino data. 
    more » « less
  5. In this paper we derive spatially dependent transfer functions for web span lateral dynamics which provide web lateral position and slope as outputs at any location in the span; the inputs are guide roller displacement, web lateral position disturbances from upstream spans, and disturbances due to misaligned rollers. This is in sharp contrast to the existing approach where only web lateral position response is available on the rollers. We describe the inherent drawbacks of the existing approach and how the new approach overcomes them. The new approach relies on taking the 1D Laplace transform with respect to the temporal variable of both the web governing equation and the boundary conditions. One can also obtain the web slope at any location within the web span with the proposed approach. A general span lateral transfer function, which is an explicit function of the spatial position along the span, is obtained first followed by its application to different intermediate guide configurations. 
    more » « less