skip to main content


Title: Nondiffusive variational problems with distributional and weak gradient constraints
Abstract In this article, we consider nondiffusive variational problems with mixed boundary conditions and (distributional and weak) gradient constraints. The upper bound in the constraint is either a function or a Borel measure, leading to the state space being a Sobolev one or the space of functions of bounded variation. We address existence and uniqueness of the model under low regularity assumptions, and rigorously identify its Fenchel pre-dual problem. The latter in some cases is posed on a nonstandard space of Borel measures with square integrable divergences. We also establish existence and uniqueness of solution to this pre-dual problem under some assumptions. We conclude the article by introducing a mixed finite-element method to solve the primal-dual system. The numerical examples illustrate the theoretical findings.  more » « less
Award ID(s):
2012391 2110263 1913004
NSF-PAR ID:
10253617
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Advances in Nonlinear Analysis
Volume:
11
Issue:
1
ISSN:
2191-950X
Page Range / eLocation ID:
1466 to 1495
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We introduce and analyze a partially augmented fully mixed formulation and a mixed finite element method for the coupled problem arising in the interaction between a free fluid and a poroelastic medium. The flows in the free fluid and poroelastic regions are governed by the Navier–Stokes and Biot equations, respectively, and the transmission conditions are given by mass conservation, balance of fluid force, conservation of momentum and the Beavers–Joseph–Saffman condition. We apply dual-mixed formulations in both domains, where the symmetry of the Navier–Stokes and poroelastic stress tensors is imposed in an ultra-weak and weak sense. In turn, since the transmission conditions are essential in the fully mixed formulation, they are imposed weakly by introducing the traces of the structure velocity and the poroelastic medium pressure on the interface as the associated Lagrange multipliers. Furthermore, since the fluid convective term requires the velocity to live in a smaller space than usual, we augment the variational formulation with suitable Galerkin-type terms. Existence and uniqueness of a solution are established for the continuous weak formulation, as well as a semidiscrete continuous-in-time formulation with nonmatching grids, together with the corresponding stability bounds and error analysis with rates of convergence. Several numerical experiments are presented to verify the theoretical results and illustrate the performance of the method for applications to arterial flow and flow through a filter. 
    more » « less
  2. We consider the numerical solution of a fourth‐order total variation flow problem representing surface relaxation below the roughening temperature. Based on a regularization and scaling of the nonlinear fourth‐order parabolic equation, we perform an implicit discretization in time and a C0Interior Penalty Discontinuous Galerkin (C0IPDG) discretization in space. The C0IPDG approximation can be derived from a mixed formulation involving numerical flux functions where an appropriate choice of the flux functions allows to eliminate the discrete dual variable. The fully discrete problem can be interpreted as a parameter dependent nonlinear system with the discrete time as a parameter. It is solved by a predictor corrector continuation strategy featuring an adaptive choice of the time step sizes. A documentation of numerical results is provided illustrating the performance of the C0IPDG method and the predictor corrector continuation strategy. The existence and uniqueness of a solution of the C0IPDG method will be shown in the second part of this paper.

     
    more » « less
  3. We establish basic properties of a variant of the semi-discrete optimal transport problem in a relatively general setting. In this problem, one is given an absolutely continuous source measure and cost function, along with a finite set which will be the support of the target measure, and a “storage fee” function. The goal is to find a map for which the total transport cost plus the storage fee evaluated on the masses of the pushforward of the source measure is minimized. We prove existence and uniqueness for the problem, derive a dual problem for which strong duality holds, and give a characterization of dual maximizers and primal minimizers. Additionally, we find some stability results for minimizers and a Γ-convergence result as the target set becomes denser and denser in a continuum domain. 
    more » « less
  4. We consider the problem of optimal consumption of multiple goods in incomplete semimartingale markets. We formulate the dual problem and identify conditions that allow for the existence and uniqueness of the solution, and provide a characterization of the optimal consumption strategy in terms of the dual optimizer. We illustrate our results with examples in both complete and incomplete models. In particular, we construct closed-form solutions in some incomplete models. 
    more » « less
  5. Abstract We consider an evolution equation involving the fractional powers, of order s ∈ (0, 1), of a symmetric and uniformly elliptic second order operator and Caputo fractional time derivative of order γ ∈ (1, 2]. Since it has been shown useful for the design of numerical techniques for related problems, we also consider a quasi–stationary elliptic problem that comes from the realization of the spatial fractional diffusion as the Dirichlet-to-Neumann map for a nonuniformly elliptic problem posed on a semi–infinite cylinder. We provide existence and uniqueness results together with energy estimates for both problems. In addition, we derive regularity estimates both in time and space; the time–regularity results show that the usual assumptions made in the numerical analysis literature are problematic. 
    more » « less