We consider the problem of optimal consumption of multiple goods in incomplete semimartingale markets. We formulate the dual problem and identify conditions that allow for the existence and uniqueness of the solution, and provide a characterization of the optimal consumption strategy in terms of the dual optimizer. We illustrate our results with examples in both complete and incomplete models. In particular, we construct closed-form solutions in some incomplete models.
more »
« less
Nondiffusive variational problems with distributional and weak gradient constraints
Abstract In this article, we consider nondiffusive variational problems with mixed boundary conditions and (distributional and weak) gradient constraints. The upper bound in the constraint is either a function or a Borel measure, leading to the state space being a Sobolev one or the space of functions of bounded variation. We address existence and uniqueness of the model under low regularity assumptions, and rigorously identify its Fenchel pre-dual problem. The latter in some cases is posed on a nonstandard space of Borel measures with square integrable divergences. We also establish existence and uniqueness of solution to this pre-dual problem under some assumptions. We conclude the article by introducing a mixed finite-element method to solve the primal-dual system. The numerical examples illustrate the theoretical findings.
more »
« less
- PAR ID:
- 10253617
- Date Published:
- Journal Name:
- Advances in Nonlinear Analysis
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 2191-950X
- Page Range / eLocation ID:
- 1466 to 1495
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We establish basic properties of a variant of the semi-discrete optimal transport problem in a relatively general setting. In this problem, one is given an absolutely continuous source measure and cost function, along with a finite set which will be the support of the target measure, and a “storage fee” function. The goal is to find a map for which the total transport cost plus the storage fee evaluated on the masses of the pushforward of the source measure is minimized. We prove existence and uniqueness for the problem, derive a dual problem for which strong duality holds, and give a characterization of dual maximizers and primal minimizers. Additionally, we find some stability results for minimizers and a Γ-convergence result as the target set becomes denser and denser in a continuum domain.more » « less
-
Abstract We study a wave equation in dimension $$d\in \{1,2\}$$ with a multiplicative space-time Gaussian noise. The existence and uniqueness of the Stratonovich solution is obtained under some conditions imposed on the Gaussian noise. The strategy is to develop some Strichartz-type estimates for the wave kernel in weighted Besov spaces, by which we can prove the well-posedness of an associated Young-type equation. Those Strichartz bounds are of independent interest.more » « less
-
Abstract In Jayanti and Trivisa (2022 J. Math. Fluid Mech. 24 46), the authors proved the existence of local-in-time weak solutions to a model of superfluidity. The system of governing equations was derived in Pitaevskii (1959 Sov. Phys. JETP 8 282–287) and couples the nonlinear Schrödinger equation and the Navier–Stokes equations. In this article, we prove a weak–strong type uniqueness theorem for these weak solutions. Only some of their regularity properties are used, allowing room for improved existence theorems in the future, with compatible uniqueness results.more » « less
-
Abstract We introduce and analyze a partially augmented fully mixed formulation and a mixed finite element method for the coupled problem arising in the interaction between a free fluid and a poroelastic medium. The flows in the free fluid and poroelastic regions are governed by the Navier–Stokes and Biot equations, respectively, and the transmission conditions are given by mass conservation, balance of fluid force, conservation of momentum and the Beavers–Joseph–Saffman condition. We apply dual-mixed formulations in both domains, where the symmetry of the Navier–Stokes and poroelastic stress tensors is imposed in an ultra-weak and weak sense. In turn, since the transmission conditions are essential in the fully mixed formulation, they are imposed weakly by introducing the traces of the structure velocity and the poroelastic medium pressure on the interface as the associated Lagrange multipliers. Furthermore, since the fluid convective term requires the velocity to live in a smaller space than usual, we augment the variational formulation with suitable Galerkin-type terms. Existence and uniqueness of a solution are established for the continuous weak formulation, as well as a semidiscrete continuous-in-time formulation with nonmatching grids, together with the corresponding stability bounds and error analysis with rates of convergence. Several numerical experiments are presented to verify the theoretical results and illustrate the performance of the method for applications to arterial flow and flow through a filter.more » « less
An official website of the United States government

