skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: MESMO 3: Flexible phytoplankton stoichiometry and refractory dissolved organic matter
Abstract. We describe the third version of Minnesota Earth System Model for Oceanbiogeochemistry (MESMO 3), an Earth system model of intermediate complexity,with a dynamical ocean, dynamic–thermodynamic sea ice, and an energy–moisture-balanced atmosphere. A major feature of version 3 is the flexibleC:N:P ratio for the three phytoplankton functional types represented in themodel. The flexible stoichiometry is based on the power law formulation withenvironmental dependence on phosphate, nitrate, temperature, and light.Other new features include nitrogen fixation, water column denitrification,oxygen and temperature-dependent organic matter remineralization, andCaCO3 production based on the concept of the residual nitrate potentialgrowth. In addition, we describe the semi-labile and refractory dissolved organicpools of C, N, P, and Fe that can be enabled in MESMO 3 as an optionalfeature. The refractory dissolved organic matter can be degraded byphotodegradation at the surface and hydrothermal vent degradation at thebottom. These improvements provide a basis for using MESMO 3 in furtherinvestigations of the global marine carbon cycle to changes in theenvironmental conditions of the past, present, and future.  more » « less
Award ID(s):
1827948
PAR ID:
10257324
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Geoscientific Model Development
Volume:
14
Issue:
4
ISSN:
1991-9603
Page Range / eLocation ID:
2265 to 2288
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract. Temperature is a master parameter in the marine carbon cycle, exerting a critical control on the rate of biological transformation of a variety of solid and dissolved reactants and substrates. Although in the construction of numerical models of marine carbon cycling, temperature has been long recognised as a key parameter in the production and export of organic matter at the ocean surface, its role in the ocean interior is much less frequently accounted for. There, bacteria (primarily) transform sinking particulate organic matter (POM) into its dissolved constituents and consume dissolved oxygen (and/or other electron acceptors such as sulfate). The nutrients and carbon thereby released then become available for transport back to the surface, influencing biological productivity and atmospheric pCO2, respectively. Given the substantial changes in ocean temperature occurring in the past, as well as in light of current anthropogenic warming, appropriately accounting for the role of temperature in marine carbon cycling may be critical to correctly projecting changes in ocean deoxygenation and the strength of feedbacks on atmosphericpCO2. Here we extend and calibrate a temperature-dependent representation ofmarine carbon cycling in the cGENIE.muffin Earth system model, intended forboth past and future climate applications. In this, we combine atemperature-dependent remineralisation scheme for sinking organic matterwith a biological export production scheme that also includes a dependenceon ambient seawater temperature. Via a parameter ensemble, we jointlycalibrate the two parameterisations by statistically contrasting model-projected fields of nutrients, oxygen, and the stable carbon isotopicsignature (δ13C) of dissolved inorganic carbon in the oceanwith modern observations. We additionally explore the role of temperature inthe creation and recycling of dissolved organic matter (DOM) and hence itsimpact on global carbon cycle dynamics. We find that for the present day, the temperature-dependent version showsa fit to the data that is as good as or better than the existing tuned non-temperature-dependent version of the cGENIE.muffin. The main impact ofaccounting for temperature-dependent remineralisation of POM is in drivinghigher rates of remineralisation in warmer waters, in turn driving a morerapid return of nutrients to the surface and thereby stimulating organicmatter production. As a result, more POM is exported below 80 m but onaverage reaches shallower depths in middle- and low-latitude warmer waterscompared to the standard model. Conversely, at higher latitudes, colderwater temperature reduces the rate of nutrient resupply to the surface andPOM reaches greater depth on average as a result of slower subsurface ratesof remineralisation. Further adding temperature-dependent DOM processeschanges this overall picture only a little, with a slight weakening ofexport production at higher latitudes. As an illustrative application of the new model configuration andcalibration, we take the example of historical warming and briefly assessthe implications for global carbon cycling of accounting for a more completeset of temperature-dependent processes in the ocean. We find that betweenthe pre-industrial era (ca. 1700) and the present (year 2010), in response to asimulated air temperature increase of 0.9 ∘C and an associatedprojected mean ocean warming of 0.12 ∘C (0.6 ∘C insurface waters and 0.02 ∘C in deep waters), a reduction inparticulate organic carbon (POC) export at 80 m of just 0.3 % occurs (or 0.7 % including a temperature-dependent DOM response). However, due to this increased recycling nearer the surface, the efficiency of the transfer of carbon away from the surface (at 80 m) to the deep ocean (at 1040 m) is reduced by 5 %. In contrast, with no assumed temperature-dependent processes impacting production or remineralisation of either POM or DOM, global POC export at 80 m falls by 2.9 % between the pre-industrial era and the present day as a consequence of ocean stratification and reduced nutrient resupply to the surface. Our analysis suggests that increased temperature-dependent nutrient recycling in the upper ocean has offset much of the stratification-induced restriction in its physical transport. 
    more » « less
  2. Abstract The transfer of photosynthetically produced organic carbon from surface to mesopelagic waters draws carbon dioxide from the atmosphere1. However, current observation-based estimates disagree on the strength of this biological carbon pump (BCP)2. Earth system models (ESMs) also exhibit a large spread of BCP estimates, indicating limited representations of the known carbon export pathways3. Here we use several decades of hydrographic observations to produce a top-down estimate of the strength of the BCP with an inverse biogeochemical model that implicitly accounts for all known export pathways. Our estimate of total organic carbon (TOC) export at 73.4 m (model euphotic zone depth) is 15.00 ± 1.12 Pg C year−1, with only two-thirds reaching 100 m depth owing to rapid remineralization of organic matter in the upper water column. Partitioned by sequestration time below the euphotic zone,τ, the globally integrated organic carbon production rate withτ > 3 months is 11.09 ± 1.02 Pg C year−1, dropping to 8.25 ± 0.30 Pg C year−1forτ > 1 year, with 81% contributed by the non-advective-diffusive vertical flux owing to sinking particles and vertically migrating zooplankton. Nevertheless, export of organic carbon by mixing and other fluid transport of dissolved matter and suspended particles remains regionally important for meeting the respiratory carbon demand. Furthermore, the temperature dependence of the sequestration efficiency inferred from our inversion suggests that future global warming may intensify the recycling of organic matter in the upper ocean, potentially weakening the BCP. 
    more » « less
  3. Abstract Salmon are important vectors for biogeochemical transport across ecosystem boundaries. Here we quantified salmon contributions to annual catchment fluxes of nutrients (N and P) and organic matter (C, N, and P) from a forested catchment in coastal southeast Alaska.Concentrations of ammonium and soluble reactive phosphorus increased by several orders of magnitude during spawning and were significantly correlated with spawning salmon densities. Nitrate concentrations increased modestly during spawning and were not significantly correlated with salmon densities. Salmon had a modest legacy effect on inorganic N and P as evidenced by elevated streamwater concentrations past the end of the spawning period.Dissolved organic carbon concentrations did not respond to the presence of salmon; however, concentrations of dissolved organic nitrogen and phosphorus showed a significant positive relationship to salmon densities. Changes in spectroscopic properties of the bulk streamwater dissolved organic matter pool indicated that streamwater dissolved organic matter became less aromatic and biolabile during spawning.On an annual basis, salmon were the dominant source of streamwater fluxes of inorganic nutrients, accounting for 92%, 65%, and 74% of annual streamwater fluxes of ammonium, nitrate, and soluble reactive phosphorus, respectively. In contrast, fluxes of organic matter were dominated by catchment sources with salmon accounting for <1% of the annual catchment flux of dissolved organic carbon and 12% and 15% of the annual fluxes of dissolved organic nitrogen and phosphorous respectively.These findings indicate that, in small coastal catchments, salmon can be a quantitatively important source of dissolved streamwater nutrients with implications for productivity in downstream estuarine ecosystems. 
    more » « less
  4. The Q10 coefficient is the ratio of reaction rates at two temperatures 10°C apart, and has been widely applied to quantify the temperature sensitivity of organic matter decomposition. However, biogeochemists and ecologists have long recognized that a constant Q10 coefficient does not describe the temperature sensitivity of organic matter decomposition accurately. To examine the consequences of the constant Q10 assumption, we built a biogeochemical reaction model to simulate anaerobic organic matter decomposition in peatlands in the Upper Peninsula of Michigan, USA, and compared the simulation results to the predictions with Q10 coefficients. By accounting for the reactions of extracellular enzymes, mesophilic fermenting and methanogenic microbes, and their temperature responses, the biogeochemical reaction model reproduces the observations of previous laboratory incubation experiments, including the temporal variations in the concentrations of dissolved organic carbon, acetate, dihydrogen, carbon dioxide, and methane, and confirms that fermentation limits the progress of anaerobic organic matter decomposition. The modeling results illustrate the oversimplification inherent in the constant Q10 assumption and how the assumption undermines the kinetic prediction of anaerobic organic matter decomposition. In particular, the model predicts that between 5°C and 30°C, the decomposition rate increases almost linearly with increasing temperature, which stands in sharp contrast to the exponential relationship given by the Q10 coefficient. As a result, the constant Q10 approach tends to underestimate the rates of organic matter decomposition within the temperature ranges where Q10 values are determined, and overestimate the rates outside the temperature ranges. The results also show how biogeochemical reaction modeling, combined with laboratory experiments, can help uncover the temperature sensitivity of organic matter decomposition arising from underlying catalytic mechanisms. 
    more » « less
  5. Rising oceanic and atmospheric oxygen levels through time have been crucial to enhanced habitability of surface Earth environments. Few redox proxies can track secular variations in dissolved oxygen concentrations ([O2]) around threshold levels for metazoan survival in the upper ocean. We present an extensive compilation of iodine to calcium ratios (I/Ca) in marine carbonates. Our record supports a major rise in atmospheric pO2 at ~400 million years ago (Ma), and reveals a step-change in the oxygenation of the upper ocean to relatively sustainable near-modern conditions at ~200 Ma. An Earth system model demonstrates that a shift in organic matter remineralization to greater depths, which may have been due to increasing size and biomineralization of eukaryotic plankton, likely drove the I/Ca signals at ~200 Ma 
    more » « less