skip to main content


Title: Phase-field dynamics with transfer of materials: The Cahn–Hillard equation with reaction rate dependent dynamic boundary conditions
The Cahn–Hilliard equation is one of the most common models to describe phase separation processes of a mixture of two materials. For a better description of short-range interactions between the material and the boundary, various dynamic boundary conditions for the Cahn–Hilliard equation have been proposed and investigated in recent times. Of particular interests are the model by Goldstein et al . [ Phys. D 240 (2011) 754–766] and the model by Liu and Wu [ Arch. Ration. Mech. Anal. 233 (2019) 167–247]. Both of these models satisfy similar physical properties but differ greatly in their mass conservation behaviour. In this paper we introduce a new model which interpolates between these previous models, and investigate analytical properties such as the existence of unique solutions and convergence to the previous models mentioned above in both the weak and the strong sense. For the strong convergences we also establish rates in terms of the interpolation parameter, which are supported by numerical simulations obtained from a fully discrete, unconditionally stable and convergent finite element scheme for the new interpolation model.  more » « less
Award ID(s):
1759535 1950868
NSF-PAR ID:
10258408
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ESAIM: Mathematical Modelling and Numerical Analysis
Volume:
55
Issue:
1
ISSN:
0764-583X
Page Range / eLocation ID:
229 to 282
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The primal variational formulation of the fourth-order Cahn-Hilliard equation requires C1-continuous finite element discretizations, e.g., in the context of isogeometric analysis. In this paper, we explore the variational imposition of essential boundary conditions that arise from the thermodynamic derivation of the Cahn-Hilliard equation in primal variables. Our formulation is based on the symmetric variant of Nitsche's method, does not introduce additional degrees of freedom and is shown to be variationally consistent. In contrast to strong enforcement, the new boundary condition formulation can be naturally applied to any mapped isogeometric parametrization of any polynomial degree. In addition, it preserves full accuracy, including higher-order rates of convergence, which we illustrate for boundary-fitted discretizations of several benchmark tests in one, two and three dimensions. Unfitted Cartesian B-spline meshes constitute an effective alternative to boundary-fitted isogeometric parametrizations for constructing C1-continuous discretizations, in particular for complex geometries. We combine our variational boundary condition formulation with unfitted Cartesian B-spline meshes and the finite cell method to simulate chemical phase segregation in a composite electrode. This example, involving coupling of chemical fields with mechanical stresses on complex domains and coupling of different materials across complex interfaces, demonstrates the flexibility of variational boundary conditions in the context of higher-order unfitted isogeometric discretizations. 
    more » « less
  2. null (Ed.)
    We study analytically and numerically the minimizers for the Cahn-Hilliard energy functional with a symmetric quartic double-well potential and under a strong anchoring condition(i.e., the Dirichlet condition) on the boundary of an underlying bounded domain. We show a bifurcation phenomenon determined by the boundary value and a parameter that describes the thickness of a transition layer separating two phases of an underlying system of binary mixtures. For the case that the boundary value is exactly the average of the two pure phases, if the bifurcation parameter is larger than or equal to a critical value, then the minimizer is unique and is exactly the homogeneous state. Otherwise, there are exactly two symmetric minimizers. The critical bifurcation value is inversely proportional to the first eigenvalue of the negative Laplace operator with the zero Dirichlet boundary condition. For a boundary value that is larger (or smaller) than that of the average of the two pure phases, the symmetry is broken and there is only one minimizer. We also obtain the bounds and morphological properties of the minimizers under additional assumptions on the domain.Our analysis utilizes the notion of the Nehari manifold and connects it to the eigenvalue problem for the negative Laplacian with the homogeneous boundary condition. We numerically minimize the functional E by solving the gradient-flow equation of E, i.e., the Allen-Cahn equation, with the designated boundary conditions, and with random initial values. We present our numerical simulations and discuss them in the context of our analytical results. 
    more » « less
  3. We present a rigorous analysis of the transient evolution of nearly circular bilayer interfaces evolving under the thin interface limit, ε ≪ 1, of the mass preserving L2-gradient flow of the strong scaling of the functionalized Cahn–Hilliard equation. For a domain Ω ⊂ R2 we construct a bilayer manifold with boundary comprised of quasi-equilibria of the flow and a projection onto the manifold that associates functions u in an H2 tubular neighborhood of the manifold with an interface Γ embedded in Ω. The linearization of the flow about the manifold does not present a clear spectral separation of modes normal and tangential to the manifold. The dimension of the parameterization of the interfaces and the bilayer manifold controls both the normal coercivity of the manifold and the coupling between normal and tangential modes, both of which increase with this dimension. The key step in the analysis is the identification of a range of dimensions in which coercivity dominates the coupling, permitting the closure of the nonlinear estimates that establish the asymptotic stability of the manifold. Orbits originating in a thin, forward invariant, tubular neighborhood ultimately converge to an equilibrium associated to a circular interface. Projections of these orbits yield interfacial evolution equivalent at leading order to the regularized curve-lengthening motion characterized by normal motion against mean curvature, regularized by a higher order Willmore expression. The curve lengthening is driven by absorption of excess mass from the regions of Ω away from the interface, leading to high dimensional dynamics that are ill-posed in the ε → 0+ limit. 
    more » « less
  4. The strong functionalized Cahn–Hilliard equation models self assembly of amphiphilic polymers in solvent. It supports codimension one and two structures that each admit two classes of bifurcations: pearling, a short-wavelength in-plane modulation of interfacial width, and meandering, a long-wavelength instability that induces a transition to curve-lengthening flow. These two potential instabilities afford distinctive routes to changes in codimension and creation of non-codimensional defects such as end caps and Y-junctions. Prior work has characterized the onset of pearling, showing that it couples strongly to the spatially constant, temporally dynamic, bulk value of the chemical potential. We present a multiscale analysis of the competitive evolution of codimension one and two structures of amphiphilic polymers within the H−1 gradient flow of the strong Functionalized Cahn–Hilliard equation. Specifically we show that structures of each codimension transition from a curve lengthening to a curve shortening flow as the chemical potential falls through a corresponding critical value. The differences in these critical values quantify the competition between the morphologies of differing codimension for the amphiphilic polymer mass. We present a bifurcation diagram for the morphological competition and compare our results quantitatively to simulations of the full system and qualitatively to simulations of self-consistent mean field models and laboratory experiments. In particular we propose that the experimentally observed onset of morphological complexity arises from a transient passage through pearling instability while the associated flow is in the curve lengthening regime. 
    more » « less
  5. null (Ed.)
    Mitochondrial cristae are dynamic invaginations of the inner membrane and play a key role in its metabolic capacity to produce ATP. Structural alterations caused by either genetic abnormalities or detrimental environmental factors impede mitochondrial metabolic fluxes and lead to a decrease in their ability to meet metabolic energy requirements. While some of the key proteins associated with mitochondrial cristae are known, very little is known about how the inner membrane dynamics are involved in energy metabolism. In this study, we present a computational strategy to understand how cristae are formed using a phase-based separation approach of both the inner membrane space and matrix space, which are explicitly modeled using the Cahn–Hilliard equation. We show that cristae are formed as a consequence of minimizing an energy function associated with phase interactions which are subject to geometric boundary constraints. We then extended the model to explore how the presence of calcium phosphate granules, entities that form in calcium overload conditions, exert a devastating inner membrane remodeling response that reduces the capacity for mitochondria to produce ATP. This modeling approach can be extended to include arbitrary geometrical constraints, the spatial heterogeneity of enzymes, and electrostatic effects to mechanize the impact of ultrastructural changes on energy metabolism. 
    more » « less