We study smoothed analysis of distributed graph algorithms, focusing on the fundamental minimum spanning tree (MST) problem. With the goal of studying the time complexity of distributed MST as a function of the "perturbation" of the input graph, we posit a smoothing model that is parameterized by a smoothing parameter 0 ≤ ϵ(n) ≤ 1 which controls the amount of random edges that can be added to an input graph G per round. Informally, ϵ(n) is the probability (typically a small function of n, e.g., n--¼) that a random edge can be added to a node per round. The added random edges, once they are added, can be used (only) for communication. We show upper and lower bounds on the time complexity of distributed MST in the above smoothing model. We present a distributed algorithm that, with high probability, 1 computes an MST and runs in Õ(min{1/√ϵ(n)2O(√log n), D+ √n}) rounds2 where ϵ is the smoothing parameter, D is the network diameter and n is the network size. To complement our upper bound, we also show a lower bound of Ω(min{1/√ϵ(n), D + √n}). We note that the upper and lower bounds essentially match except for a multiplicative 2O(√log n) polylog(n) factor. Our work can be considered as a first step in understanding the smoothed complexity of distributed graph algorithms. 
                        more » 
                        « less   
                    
                            
                            Universally-optimal distributed algorithms for known topologies
                        
                    
    
            Many distributed optimization algorithms achieve existentially-optimal running times, meaning that there exists some pathological worst-case topology on which no algorithm can do better. Still, most networks of interest allow for exponentially faster algorithms. This motivates two questions: (i) What network topology parameters determine the complexity of distributed optimization? (ii) Are there universally-optimal algorithms that are as fast as possible on every topology? We resolve these 25-year-old open problems in the known-topology setting (i.e., supported CONGEST) for a wide class of global network optimization problems including MST, (1+є)-min cut, various approximate shortest paths problems, sub-graph connectivity, etc. In particular, we provide several (equivalent) graph parameters and show they are tight universal lower bounds for the above problems, fully characterizing their inherent complexity. Our results also imply that algorithms based on the low-congestion shortcut framework match the above lower bound, making them universally optimal if shortcuts are efficiently approximable. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10271616
- Date Published:
- Journal Name:
- Symposium on Theory of Computing (STOC)
- Page Range / eLocation ID:
- 1166 to 1179
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Bonomi, Silvia; Galletta, Letterio; Rivière, Etienne; Schiavoni, Valerio (Ed.)It has been shown that one can design distributed algorithms that are (nearly) singularly optimal, meaning they simultaneously achieve optimal time and message complexity (within polylogarithmic factors), for several fundamental global problems such as broadcast, leader election, and spanning tree construction, under the KT₀ assumption. With this assumption, nodes have initial knowledge only of themselves, not their neighbors. In this case the time and message lower bounds are Ω(D) and Ω(m), respectively, where D is the diameter of the network and m is the number of edges, and there exist (even) deterministic algorithms that simultaneously match these bounds. On the other hand, under the KT₁ assumption, whereby each node has initial knowledge of itself and the identifiers of its neighbors, the situation is not clear. For the KT₁ CONGEST model (where messages are of small size), King, Kutten, and Thorup (KKT) showed that one can solve several fundamental global problems (with the notable exception of BFS tree construction) such as broadcast, leader election, and spanning tree construction with Õ(n) message complexity (n is the network size), which can be significantly smaller than m. Randomization is crucial in obtaining this result. While the message complexity of the KKT result is near-optimal, its time complexity is Õ(n) rounds, which is far from the standard lower bound of Ω(D). An important open question is whether one can achieve singular optimality for the above problems in the KT₁ CONGEST model, i.e., whether there exists an algorithm running in Õ(D) rounds and Õ(n) messages. Another important and related question is whether the fundamental BFS tree construction can be solved with Õ(n) messages (regardless of the number of rounds as long as it is polynomial in n) in KT₁. In this paper, we show that in the KT₁ LOCAL model (where message sizes are not restricted), singular optimality is achievable. Our main result is that all global problems, including BFS tree construction, can be solved in Õ(D) rounds and Õ(n) messages, where both bounds are optimal up to polylogarithmic factors. Moreover, we show that this can be achieved deterministically.more » « less
- 
            null (Ed.)Motivated by the increasing need to understand the distributed algorithmic foundations of large-scale graph computations, we study some fundamental graph problems in a message-passing model for distributed computing where k ≥ 2 machines jointly perform computations on graphs with n nodes (typically, n >> k). The input graph is assumed to be initially randomly partitioned among the k machines, a common implementation in many real-world systems. Communication is point-to-point, and the goal is to minimize the number of communication rounds of the computation. Our main contribution is the General Lower Bound Theorem , a theorem that can be used to show non-trivial lower bounds on the round complexity of distributed large-scale data computations. This result is established via an information-theoretic approach that relates the round complexity to the minimal amount of information required by machines to solve the problem. Our approach is generic, and this theorem can be used in a “cookbook” fashion to show distributed lower bounds for several problems, including non-graph problems. We present two applications by showing (almost) tight lower bounds on the round complexity of two fundamental graph problems, namely, PageRank computation and triangle enumeration . These applications show that our approach can yield lower bounds for problems where the application of communication complexity techniques seems not obvious or gives weak bounds, including and especially under a stochastic partition of the input. We then present distributed algorithms for PageRank and triangle enumeration with a round complexity that (almost) matches the respective lower bounds; these algorithms exhibit a round complexity that scales superlinearly in k , improving significantly over previous results [Klauck et al., SODA 2015]. Specifically, we show the following results: PageRank: We show a lower bound of Ὼ(n/k 2 ) rounds and present a distributed algorithm that computes an approximation of the PageRank of all the nodes of a graph in Õ(n/k 2 ) rounds. Triangle enumeration: We show that there exist graphs with m edges where any distributed algorithm requires Ὼ(m/k 5/3 ) rounds. This result also implies the first non-trivial lower bound of Ὼ(n 1/3 ) rounds for the congested clique model, which is tight up to logarithmic factors. We then present a distributed algorithm that enumerates all the triangles of a graph in Õ(m/k 5/3 + n/k 4/3 ) rounds.more » « less
- 
            Network connectivity optimization, which aims to manipulate network connectivity by changing its underlying topology, is a fundamental task behind a wealth of high-impact data mining applications, ranging from immunization, critical infrastructure construction, social collaboration mining, bioinformatics analysis, to intelligent transportation system design. To tackle its exponential computation complexity, greedy algorithms have been extensively used for network connectivity optimization by exploiting its diminishing returns property. Despite the empirical success, two key challenges largely remain open. First, on the theoretic side, the hardness, as well as the approximability of the general network connectivity optimization problem are still nascent except for a few special instances. Second, on the algorithmic side, current algorithms are often hard to balance between the optimization quality and the computational efficiency. In this paper, we systematically address these two challenges for the network connectivity optimization problem. First, we reveal some fundamental limits by proving that, for a wide range of network connectivity optimization problems, (1) they are NP-hard and (2) (1-1/e) is the optimal approximation ratio for any polynomial algorithms. Second, we propose an effective, scalable and general algorithm (CONTAIN) to carefully balance the optimization quality and the computational efficiency.more » « less
- 
            We propose distributed scheduling algorithms that guarantee a constant fraction of the maximum throughput for typical wireless topologies, and have O(1) delay and complexity in the network size. Our algorithms resolve collisions among pairs of conflicting nodes by assigning a master-slave hierarchy. When the master-slave hierarchy is chosen randomly, our algorithm matches the throughput performance of the maximal scheduling policies, with a complexity and delay that do not scale with network size. When the master-slave hierarchy is chosen based on the network topology, the throughput performance of our algorithm is characterized by a parameter of the conflict graph called the master-interference degree. For commonly-used conflict-graph topologies, our results lead to the best known throughput guarantees among the algorithms that have O(1) delay and complexity. Numerical results indicate that our algorithms outperform the existing O(1) complexity algorithms like Q-CSMA.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    