Blue carbon (C) ecosystems (mangroves, salt marshes, and seagrass beds) sequester high amounts of C, which can be respired back into the atmosphere, buried for long periods, or exported to adjacent ecosystems by tides. The lateral exchange of C between a salt marsh and adjacent water is a key factor that determines whether a salt marsh is a C source (i.e., outwelling) or sink in an estuary. We measured salinity, particulate organic carbon (POC), and dissolved organic carbon (DOC) seasonally over eight tidal cycles in a tidal creek at the Chongming Dongtan wetland from July 2017 to April 2018 to determine whether the marsh was a source or sink for estuarine C. POC and DOC fluxes were significantly correlated in the four seasons driven by water fluxes, but the concentration of DOC and POC were positively correlated only in autumn and winter. DOC and POC concentrations were the highest in autumn (3.54 mg/L and 4.19 mg/L, respectively) and the lowest in winter and spring (1.87 mg/L and 1.51 mg/L, respectively). The tidal creek system in different seasons showed organic carbon (OC) export, and the organic carbon fluxes during tidal cycles ranged from –12.65 to 4.04 g C/m2. The intensity showed significant seasonal differences, with the highest in summer, the second in autumn, and the lowest in spring. In different seasons, organic carbon fluxes during spring tides were significantly higher than that during neap tides. Due to the tidal asymmetry of the Yangtze River estuary and the relatively young stage, the salt marshes in the study area acted as a strong lateral carbon source.
more »
« less
Tropical cyclones cumulatively control regional carbon fluxes in Everglades mangrove wetlands (Florida, USA)
Abstract Mangroves are the most blue-carbon rich coastal wetlands contributing to the reduction of atmospheric CO 2 through photosynthesis (sequestration) and high soil organic carbon (C) storage. Globally, mangroves are increasingly impacted by human and natural disturbances under climate warming, including pervasive pulsing tropical cyclones. However, there is limited information assessing cyclone’s functional role in regulating wetlands carbon cycling from annual to decadal scales. Here we show how cyclones with a wide range of integrated kinetic energy (IKE) impact C fluxes in the Everglades, a neotropical region with high cyclone landing frequency. Using long-term mangrove Net Primary Productivity (Litterfall, NPP L ) data (2001–2018), we estimated cyclone-induced litterfall particulate organic C (litter-POC) export from mangroves to estuarine waters. Our analysis revealed that this lateral litter-POC flux (71–205 g C m −2 year −1 )—currently unaccounted in global C budgets—is similar to C burial rates (69–157 g C m −2 year −1 ) and dissolved inorganic carbon (DIC, 61–229 g C m −2 year −1 ) export. We proposed a statistical model (PULITER) between IKE-based pulse index and NPP L to determine cyclone’s impact on mangrove role as C sink or source. Including the cyclone’s functional role in regulating mangrove C fluxes is critical to developing local and regional climate change mitigation plans.
more »
« less
- PAR ID:
- 10272181
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Mangrove wetlands are important ecosystems, yet human development coupled with climate change threatens mangroves and their large carbon stores. This study seeks to understand the soil carbon dynamics in hydrologically altered mangrove swamps by studying aboveground biomass estimates and belowground soil carbon concentrations in mangrove swamps with high, medium, and low levels of disturbance in Cataño, Jobos Bay, and Vieques, Puerto Rico. All three sites were affected by hurricane María in 2017, one year prior to the study. As a result of being hit by the Saffir-Simpson category 4 hurricane, the low-disturbance site had almost no living mangroves left during sampling. There was no correlation between level of hydrologic alteration and carbon storage, rather different patterns emerged for each of the three sites. At the highly disturbed location, belowground carbon mass averaged 0.048 ± 0.001 g-C cm−3 which increased with increased aboveground biomass. At the moderately disturbed location, belowground carbon mass averaged 0.047 ± 0.003 g-C cm−3 and corresponded to distance from open water. At the low-disturbed location, organic carbon was consistent between all sites and inorganic carbon concentrations controlled total carbon mass which averaged 0.048 ± 0.002 g-C cm−3. These results suggest that mangroves are adaptive and resilient and have the potential to retain their carbon storage capacities despite hydrologic alterations, but mass carbon storage within mangrove forests can be spatially variable in hydrologically altered conditions.more » « less
-
Abstract Coastal ecosystems are rapidly shifting due to changes in hydrologic presses (e.g., sea‐level rise) and pulses (e.g., seasonal hydrology, disturbances, and restoration of degraded wetlands). Changing water levels and sources are master variables in coastal wetlands that can alter carbon concentrations, sources, processing, and export. Yet, how long‐term increases in water levels from marine and freshwater sources influence dissolved organic carbon (DOC) concentrations and dissolved organic matter (DOM) composition is uncertain. We quantified how long‐term changes in water levels are affecting DOC concentration (2001–2021) and DOM composition (2011–2021) differently across the Florida Everglades. DOC concentrations decreased with high water depths in peat marshes and increased with high water levels in marl marshes and across mangroves, and these relationships were reproduced in freshwater peat marshes and shrub mangroves. In the highly productive riverine mangroves, cross‐wavelet analysis highlighted variable relationships between DOC and water level were largely modulated by hurricane disturbances. By comparing relationships between water level and DOC concentrations with carbon sources from DOM fluorescence indices, we found that changing water sources between the dry and wet season shift DOM from algal to detrital sources in freshwater marshes, from detrital marsh to detrital mangrove sources in the brackish water ecotone, and from detrital mangrove to algal marine sources in downstream mangroves. As climate change and anthropogenic drivers continue to alter water levels in coastal wetlands, integrating spatial and temporal measurements of DOC concentrations and DOM compositions is essential to better constrain the transformation and export of carbon across these coastal ecosystems.more » « less
-
Abstract Coastal wetlands play a vital role in the global carbon cycle and are under pressure from multiple anthropogenic influences. Altered hydrology and land use change increase susceptibility of wetlands to sea‐level rise, saltwater intrusion, tidal flood events, and storm surges. Flooding from perigean spring tides and storm surges rapidly inundates coastal wetlands with saline waters, quickly surpassing vegetation tolerances, leading to shifts in soil microbial respiration, peat collapse, and plant mortality, followed by establishment of salt‐tolerant vegetation. The Southeast Saline Everglades (SESE) is facing many of these pressures, making it a model system to examine the impacts of ecosystem state transitions and their carbon dynamics. Saltwater flooding from Hurricane Irma (2017) initiated a transitional state, where less salt‐tolerant vegetation (e.g.,Cladium jamaicense) is declining, allowing halophytic species such asRhizophora mangleto colonize, altering the ecosystem's biogeochemistry. We utilized eddy covariance techniques in the SESE to measure ecosystem fluxes of CO2and CH4in an area that is transitioning to an alternative state. The landward expansion of mangroves is increasing leaf area, leading to greater physiological activity and higher biomass. Our site was presented initially as a small C source (47.0 g C m−2) in 2020, and by 2022 was a sink (−84.24 g C m−2), with annual greenhouse carbon balance ranging from −0.04 to 0.18. Net radiative forcing ranged from 2.04 to 2.27 W m−2 d−1. As the mangrove landward margin expands, this may lead the area to become a greater carbon sink and a potential offset to increasing atmospheric CO2concentrations.more » « less
-
Coastal wetlands are globally important stores of carbon (C). However, accelerated sea-level rise (SLR), increased saltwater intrusion, and modified freshwater discharge can contribute to the collapse of peat marshes, converting coastal peatlands into open water. Applying results from multiple experiments from sawgrass (Cladium jamaicense)-dominated freshwater and brackish water marshes in the Florida Coastal Everglades, we developed a system-level mechanistic peat elevation model (EvPEM). We applied the model to simulate net ecosystem C balance (NECB) and peat elevation in response to elevated salinity under inundation and drought exposure. Using a mass C balance approach, we estimated net gain in C and corresponding export of aquatic fluxes ( ) in the freshwater marsh under ambient conditions (NECB = 1119 ± 229 gC m−2 year−1; FAQ = 317 ± 186 gC m−2 year−1). In contrast, the brackish water marsh exhibited substantial peat loss and aquatic C export with ambient (NECB = −366 ± 15 gC m−2 year−1; FAQ = 311 ± 30 gC m−2 year−1) and elevated salinity (NECB = −594 ± 94 gC m−2 year−1; FAQ = 729 ± 142 gC m−2 year−1) under extended exposed conditions. Further, mass balance suggests a considerable decline in soil C and corresponding elevation loss with elevated salinity and seasonal dry-down. Applying EvPEM, we developed critical marsh net primary productivity (NPP) thresholds as a function of salinity to simulate accumulating, steady-state, and collapsing peat elevations. The optimization showed that ~150–1070 gC m−2 year−1 NPP could support a stable peat elevation (elevation change ≈ SLR), with the corresponding salinity ranging from 1 to 20 ppt under increasing inundation levels. The C budgeting and modeling illustrate the impacts of saltwater intrusion, inundation, and seasonal dry-down and reduce uncertainties in understanding the fate of coastal peat wetlands with SLR and freshwater restoration. The modeling results provide management targets for hydrologic restoration based on the ecological conditions needed to reduce the vulnerability of the Everglades' peat marshes to collapse. The approach can be extended to other coastal peatlands to quantify C loss and improve understanding of the influence of the biological controls on wetland C storage changes for coastal management.more » « less
An official website of the United States government

