skip to main content


Title: Integrating math and science content through covariational reasoning: the case of gravity
Integrating mathematics content into science usually plays a supporting role, where students use their existing mathematical knowledge for solving science tasks without exhibiting any new mathematical meanings during the process. To help students explore the reciprocal relationship between math and science, we designed an instructional module that prompted them to reason covariationally about the quantities involved in the phenomenon of the gravitational force. The results of a whole-class design experiment with sixth-grade students showed that covariational reasoning supported students’ understanding of the phenomenon of gravity. Also, the examination of the phenomenon of gravity provided a constructive space for students to construct meanings about co-varying quantities. Specifically, students reasoned about the change in the magnitudes and values of mass, distance, and gravity as those changed simultaneously as well as the multiplicative change of these quantities as they changed in relation to each other. They also reasoned multivariationally illustrating that they coordinated mass and distance working together to define the gravitational force. Their interactions with the design, which included the tool, tasks, representations, and questioning, showed to be a structuring factor in the formation and reorganization of meanings that students exhibited. Thus, this study illustrates the type of design activity that provided a constructive space for students’ forms of covariational reasoning in the context of gravity. This design can be used to develop other STEM modules that integrate scientific phenomena with covariational reasoning through technology.  more » « less
Award ID(s):
1742125
NSF-PAR ID:
10272330
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Mathematical Thinking and Learning
ISSN:
1098-6065
Page Range / eLocation ID:
1 to 26
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Instructional designs that include two or more artifacts (digital manipulatives, tables, graphs) have shown to support students’ development of reasoning about covarying quantities. However, research often neglects how this development occurs from the student point of view during the interactions with these artifacts. An analysis from this lens could significantly justify claims about what designs really support students’ covariational reasoning. Our study makes this contribution by examining the “messiness” of students’ transitions as they interact with various artifacts that represent the same covariational situation. We present data from a design experiment with a pair of sixth-grade students who engaged with the set of artifacts we designed (simulation, table, and graph) to explore quantities that covary. An instrumental genesis perspective is followed to analyze students’ transitions from one artifact to the next. We utilize the distinction between static and emergent shape thinking to make inferences about their reorganizations of reasoning as they (re-)form a system of instruments that integrates previously developed instruments. Our findings provide an insight into the nature of the synergy of artifacts that offers a constructive space for students to shape and reorganize their meanings about covarying quantities. Specifically, we propose different subcategories of complementarities and antagonisms between artifacts that have the potential to make this synergy productive. 
    more » « less
  2. Lischka, A. E. ; Dyer, E. B. ; Jones, R. S. ; Lovett, J. N.. ; Strayer, J. ; & Drown, S. (Ed.)
    Many studies use instructional designs that include two or more artifacts (digital manipulatives, tables, graphs) to support students’ development of reasoning about covarying quantities. While students’ forms of covariational reasoning and the designs are often the focus of these studies, the way students’ interactions and transitions between artifacts shape their actions and thinking is often neglected. By examining the transitions that students make between artifacts as they construct and reorganize their reasoning, our study aimed to justify claims made by various studies about the nature of the synergy of artifacts. In this paper, we present data from a design experiment with a pair of sixth-grade students to discuss how their transitions between artifacts provided a constructive space for them to reason about covarying quantities in graphs. 
    more » « less
  3. We designed an instructional module that seamlessly integrates mathematics, environmental science, and technology to help students think critically about climate change. The results from a design experiment in a sixth-grade classroom show that our tasks not only enhanced students' covariational reasoning in mathematics but also helped students identify the different traits of climate change they encounter every day in the news media. 
    more » « less
  4. Abstract

    In recent years, there has been a strong push to transform STEM education at K‐12 and collegiate levels to help students learn to think like scientists. One aspect of this transformation involves redesigning instruction and curricula around fundamental scientific ideas that serve as conceptual scaffolds students can use to build cohesive knowledge structures. In this study, we investigated how students use mass balance reasoning as a conceptual scaffold to gain a deeper understanding of how matter moves through biological systems. Our aim was to lay the groundwork for a mass balance learning progression in physiology. We drew on a general models framework from biology and a covariational reasoning framework from math education to interpret students' mass balance ideas. We used a constant comparative method to identify students' reasoning patterns from 73 interviews conducted with undergraduate biology students. We helped validate the reasoning patterns identified with >8000 written responses collected from students at multiple institutions. From our analyses, we identified two related progress variables that describe key elements of students' performances: the first describes how students identify and use matter flows in biology phenomena; the second characterizes how students use net rate‐of‐change to predict how matter accumulates in, or disperses from, a compartment. We also present a case study of how we used our emerging mass balance learning progression to inform instructional practices to support students' mass balance reasoning. Our progress variables describe one way students engage in three dimensional learning by showing how student performances associated with the practice of mathematical thinking reveal their understanding of the core concept of matter flows as governed by the crosscutting concept of matter conservation. Though our work is situated in physiology, it extends previous work in climate change education and is applicable to other scientific fields, such as physics, engineering, and geochemistry.

     
    more » « less
  5. Olanoff, D. ; Johnson, K. ; Spitzer, S. (Ed.)
    In this paper we examine sixth grade students’ constructions and reorganizations of variational, covariational, and multivariational reasoning as they engaged in dynamic digital tasks exploring the science phenomenon of weather. We present case studies of two students from a larger whole-class design experiment to illustrate students’ forms of reasoning and the type of design that supported those constructions and reorganizations. We argue that students constructed multivariational relationships by bridging, transforming, and reforming their reasoning and that the nature of the multivariational relationship being constructed affected this process. 
    more » « less