skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effects of stochasticity on the length and behaviour of ecological transients
There is a growing recognition that ecological systems can spend extended periods of time far away from an asymptotic state, and that ecological understanding will therefore require a deeper appreciation for how long ecological transients arise. Recent work has defined classes of deterministic mechanisms that can lead to long transients. Given the ubiquity of stochasticity in ecological systems, a similar systematic treatment of transients that includes the influence of stochasticity is important. Stochasticity can of course promote the appearance of transient dynamics by preventing systems from settling permanently near their asymptotic state, but stochasticity also interacts with deterministic features to create qualitatively new dynamics. As such, stochasticity may shorten, extend or fundamentally change a system’s transient dynamics. Here, we describe a general framework that is developing for understanding the range of possible outcomes when random processes impact the dynamics of ecological systems over realistic time scales. We emphasize that we can understand the ways in which stochasticity can either extend or reduce the lifetime of transients by studying the interactions between the stochastic and deterministic processes present, and we summarize both the current state of knowledge and avenues for future advances.  more » « less
Award ID(s):
2025235 1722578
PAR ID:
10273064
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of The Royal Society Interface
Volume:
18
Issue:
180
ISSN:
1742-5662
Page Range / eLocation ID:
20210257
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Standard procedures for capture–mark–recapture modelling (CMR) for the study of animal demography include running goodness-of-fit tests on a general starting model. A frequent reason for poor model fit is heterogeneity in local survival among individuals captured for the first time and those already captured or seen on previous occasions. This deviation is technically termed a transience effect. In specific cases, simple, uni-state CMR modeling showing transients may allow researchers to assess the role of these transients on population dynamics. Transient individuals nearly always have a lower local survival probability, which may appear for a number of reasons. In most cases, transients arise due to permanent dispersal, higher mortality, or a combination of both. In the case of higher mortality, transients may be symptomatic of a cost of first reproduction. A few studies working at large spatial scales actually show that transients more often correspond to survival costs of first reproduction rather than to permanent dispersal, bolstering the interpretation of transience as a measure of costs of reproduction, since initial detections are often associated with first breeding attempts. Regardless of their cause, the loss of transients from a local population should lower population growth rate. We review almost 1000 papers using CMR modeling and find that almost 40% of studies fitting the searching criteria (N = 115) detected transients. Nevertheless, few researchers have considered the ecological or evolutionary meaning of the transient phenomenon. Only three studies from the reviewed papers considered transients to be a cost of first reproduction. We also analyze a long-term individual monitoring dataset (1988–2012) on a long-lived bird to quantify transients, and we use a life table response experiment (LTRE) to measure the consequences of transients at a population level. As expected, population growth rate decreased when the environment became harsher while the proportion of transients increased. LTRE analysis showed that population growth can be substantially affected by changes in traits that are variable under environmental stochasticity and deterministic perturbations, such as recruitment, fecundity of experienced individuals, and transient probabilities. This occurred even though sensitivities and elasticities of these parameters were much lower than those for adult survival. The proportion of transients also increased with the strength of density-dependence. These results have implications for ecological and evolutionary studies and may stimulate other researchers to explore the ecological processes behind the occurrence of transients in capture–recapture studies. In population models, the inclusion of a specific state for transients may help to make more reliable predictions for endangered and harvested species. 
    more » « less
  2. Transient dynamics pose unique challenges when dealing with predictions and management of ecological systems yet little headway has been made on understanding when an ecological system might be in a transient state. As a start we consider a specific model, here focusing on a canonical model for anaerobic digestion. Through a series of simplifications, we analyse the potential of the model for transient dynamics, and the driving mechanisms. Using a stochastic analogue of this model, we create synthetic ecological data. Thus, combining our understanding of the deterministic transient dynamics with the use of empirical dynamical modelling, we propose several new metrics to indicate when the synthetic time series is leaving a transient state. 
    more » « less
  3. null (Ed.)
    Abstract Analyses of transient dynamics are critical to understanding infectious disease transmission and persistence. Identifying and predicting transients across scales, from within-host to community-level patterns, plays an important role in combating ongoing epidemics and mitigating the risk of future outbreaks. Moreover, greater emphases on non-asymptotic processes will enable timely evaluations of wildlife and human diseases and lead to improved surveillance efforts, preventive responses, and intervention strategies. Here, we explore the contributions of transient analyses in recent models spanning the fields of epidemiology, movement ecology, and parasitology. In addition to their roles in predicting epidemic patterns and endemic outbreaks, we explore transients in the contexts of pathogen transmission, resistance, and avoidance at various scales of the ecological hierarchy. Examples illustrate how (i) transient movement dynamics at the individual host level can modify opportunities for transmission events over time; (ii) within-host energetic processes often lead to transient dynamics in immunity, pathogen load, and transmission potential; (iii) transient connectivity between discrete populations in response to environmental factors and outbreak dynamics can affect disease spread across spatial networks; and (iv) increasing species richness in a community can provide transient protection to individuals against infection. Ultimately, we suggest that transient analyses offer deeper insights and raise new, interdisciplinary questions for disease research, consequently broadening the applications of dynamical models for outbreak preparedness and management. 
    more » « less
  4. Understanding how populations respond to increasingly variable conditions is a major objective for natural resource managers forecasting extinction risk. The lesson from current modelling is clear: increasing environmental variability increases population abundance variability. We show that this paradigm fails to describe a broad class of empirically observed dynamics, namely endogenously driven population cycles. In contrast to the dominant paradigm, these populations can exhibit reduced long-run population variance under increasing environmental variability. We provide evidence for a mechanistic explanation of this phenomenon that relies on how stochasticity interacts with long transient dynamics present in the deterministic cycling model. This interaction stands in contrast to the often assumed additivity of stochastic and deterministic drivers of population fluctuations. We show evidence for the phenomenon in two cyclical populations: flour beetles and Canadian lynx. We quantify the impact of the phenomenon with new theory that partitions the effects of nonlinear dynamics and stochastic variation on dynamical systems. In both empirical examples, the partitioning shows that the interaction between deterministic and stochastic dynamics reduces the variance in population size. Our results highlight that previous predictions about extinction under environmental variability may prove inadequate to understand the effects of climate change in some populations. 
    more » « less
  5. The size of fruit bat colonies ranges from dozens to hundreds of thousands of individuals, depending on the species. While a deterministic modelling approach is appropriate for large colonies, the role of population fluctuations can be all-important for small colonies. From this perspective, we analyse the infection dynamics in small zoonotic niches due to filoviruses, e.g. Ebola. To this end, we perform stochastic numerical simulations and analytical calculations. The inherent stochasticity in ecological processes may play a significant role in driving small populations towards extinction. Here, we reveal that fluctuations can either lead to virus eradication or to sustain infection compared with the deterministic dynamics, depending on the size of the zoonotic niche. Altogether, our findings reveal non-trivial stochastic effects, which can shed light on the infection dynamics in small- and medium-sized bat colonies and help design preventive measures for zoonotic diseases. 
    more » « less