skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Flyby reaction trajectories: Chemical dynamics under extrinsic force
Dynamic effects are an important determinant of chemical reactivity and selectivity, but the deliberate manipulation of atomic motions during a chemical transformation is not straightforward. Here, we demonstrate that extrinsic force exerted upon cyclobutanes by stretching pendant polymer chains influences product selectivity through force-imparted nonstatistical dynamic effects on the stepwise ring-opening reaction. The high product stereoselectivity is quantified by carbon-13 labeling and shown to depend on external force, reactant stereochemistry, and intermediate stability. Computational modeling and simulations show that, besides altering energy barriers, the mechanical force activates reactive intramolecular motions nonstatistically, setting up “flyby trajectories” that advance directly to product without isomerization excursions. A mechanistic model incorporating nonstatistical dynamic effects accounts for isomer-dependent mechanochemical stereoselectivity.  more » « less
Award ID(s):
1933932
PAR ID:
10273803
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
American Association for the Advancement of Science (AAAS)
Date Published:
Journal Name:
Science
Volume:
373
Issue:
6551
ISSN:
0036-8075
Page Range / eLocation ID:
p. 208-212
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Selectivity in organic chemistry is generally presumed to arise from energy differences between competing selectivity-determining transition states. However, in cases where static density functional theory (DFT) fails to reproduce experimental product distributions, dynamic effects can be examined to understand the behavior of more complex reaction systems. Previously, we reported a method for nitrogen deletion of secondary amines which relies on the formation of isodiazene intermediates that subsequently extrude dinitrogen with concomitant C–C bond formation via a caged diradical. Herein, a detailed mechanistic analysis of the nitrogen deletion of 1-aryl-tetrahydroisoquinolines is presented, suggesting that in this system the previously determined diradical mechanism undergoes dynamically controlled partitioning to both the normal 1,5-coupling product and an unexpected spirocyclic dearomatized intermediate, which converges to the expected indane by an unusually facile 1,3-sigmatropic rearrangement. This mechanism is not reproduced by static DFT but is supported by quasi-classical molecular dynamics calculations and unifies several unusual observations in this system, including partial chirality transfer, nonstatistical isotopic scrambling at the ethylene bridge, the isolation of spirocyclic dearomatized species in a related heterocyclic series, and the observation that introduction of an 8-substituent dramatically improves enantiospecificity. 
    more » « less
  2. Since no later than the 1970s, organic chemists have speculated on the role of glycosyl oxonium ions in chemical O-glycosylation. Such species result from the attack of ethers on glycosyl oxocarbenium ions and are invoked to explain 1,2-cis-selectivity in ether solvents. However, a systematic study to probe this phenomenon appears to be lacking in the chemical literature. Herein, we study the effects of solvent, counteranion, protecting group electron-withdrawing effects, and acceptor on O-glycosylation stereoselectivity with D-glucosyl trichloroacetimidate donors. While many of these transformations proceed with 1,2- cis-selectivity, our results suggest that glycosyl oxonium ions play minimal, if any, role in O-glycosylation. 
    more » « less
  3. In the dynamically stepwise reaction pathway C–H insertionversusCope selectivity is highly influenced by whether or not vibrational synchronization occurs in the nonstatistical entropic intermediate. 
    more » « less
  4. When multiple reaction steps occur before thermal equilibration, kinetic energy from one reaction step can influence overall product distributions in ways that are not well predicted by transition state theory. An understanding of how the structural features of mechanophores, such as substitutions, affects reactivity, product distribution, and the extent of dynamic effects in the mechanochemical manifolds is necessary for designing chemical reactions and responsive materials. We synthesized two tetrafluorinated [4]-ladderanes with fluorination on different rungs and found that the fluorination pattern influenced the force sensitivity and stereochemical distribution of products in the mechanochemistry of these fluorinated ladderanes. The threshold forces for mechanochemical unzipping of ladderane were decreased by alpha-fluorination and increased by gamma-fluorination; these changes correlated to the different stabilizing or destabilizing effects of fluorination patterns on the first transition state. Using ab initio steered molecular dynamics (AISMD), we compared the product distributions of synthesized and hypothetical ladderanes with different substitution patterns. These calculations suggest that fluorination on the first two bonds of ladderane gives rise to a larger fraction of dynamic trajectories and a larger fraction of E alkene prod-uct through a mechanism resulting from larger momentum because of the greater atomic mass of fluorine. Fluorination on the third and fourth rungs instead gives a larger fraction of E alkene product primarily due to electronic effects. These com-bined experimental and computational studies of the mechanochemical unzipping of fluorinated ladderanes provide an example of how relatively simple substituents can affect the extent of non-statistical dynamics, and thus mechanochemical outcomes. 
    more » « less
  5. The decarbonization of chemical manufacturing is a multifaceted challenge that requires technologies able to selectively convert CO2-sequestering feedstocks using renewable energy. The electrochemical conversion of biomass-derived platform chemicals is well-positioned to address this need. However, the electroactivity of biobased molecules that carry multiple redox centers remains challenging to predict and control. For instance, cis,cis-muconic acid, a conjugated dicarboxylic acid, is electrohydrogenated to trans-3-hexenedioic acid (t3HDA) with excellent yield and stereoselectivity while free energy calculations predict mixtures of 2- and 3-hexenedioic acids. To decipher this discrepancy, we studied the electrohydrogenation of C4 and C6 unsaturated acids, diacids, and their esters, and tied the observed product distributions to the electronic structure of the parent molecules. We show that the electrohydrogenation of the three isomers of muconic acid proceeds through a hydrogenating proton-coupled electron transfer (PCET) in the α position of the carboxylic acids and invariably yields t3HDA as the sole product. The selectivity can be explained by the electron-withdrawing effect of the carboxylic acid groups and the resulting perturbation of the local electron density that promotes the 2,5-hydrogenation over the thermodynamically-preferred 2,3-hydrogenation. This electronic perturbation is reflected in the computed Fukui indices, which can serve as local reactivity descriptors to predict product distributions not captured by calculated reaction thermochemistry. In addition to predicting the electroactivity of other unsaturated acids, this approach can provide insights into homogeneous electrochemical processes that may coexist with surface-mediated electrocatalytic transformations. 
    more » « less