skip to main content

Title: How Do the Purcell Factor, the Q ‐Factor, and the Beta Factor Affect the Laser Threshold?
Award ID(s):
1830886 1856515
Publication Date:
Journal Name:
Laser & Photonics Reviews
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. The evolution of novel features, such as eyes or wings, that allow organisms to exploit their environment in new ways can lead to increased diversification rates. Therefore, understanding the genetic and developmental mechanisms involved in the origin of these key innovations has long been of interest to evolutionary biologists. In flowering plants, floral nectar spurs are a prime example of a key innovation, with the independent evolution of spurs associated with increased diversification rates in multiple angiosperm lineages due to their ability to promote reproductive isolation via pollinator specialization. As none of the traditional plant model taxa have nectar spurs,more »little is known about the genetic and developmental basis of this trait. Nectar spurs are a defining feature of the columbine genusAquilegia(Ranunculaceae), a lineage that has experienced a relatively recent and rapid radiation. We use a combination of genetic mapping, gene expression analyses, and functional assays to identify a gene crucial for nectar spur development,POPOVICH(POP), which encodes a C2H2 zinc-finger transcription factor.POPplays a central role in regulating cell proliferation in theAquilegiapetal during the early phase (phase I) of spur development and also appears to be necessary for the subsequent development of nectaries. The identification ofPOPopens up numerous avenues for continued scientific exploration, including further elucidating of the genetic pathway of which it is a part, determining its role in the initial evolution of theAquilegianectar spur, and examining its potential role in the subsequent evolution of diverse spur morphologies across the genus.

    « less