skip to main content


Title: How Do the Purcell Factor, the Q ‐Factor, and the Beta Factor Affect the Laser Threshold?
Abstract

As lasers get more and more miniaturized and their dimensions become comparable to the wavelength, two interconnected phenomena take place: the fraction of spontaneous radiation going into a specific laser mode (β‐factor) increases and can ultimately reach unity, while the radiative lifetime gets shortened by the Purcell factorFp. Often it is assumed that an increase of these two factors, along with the quality factor (Q‐factor), almost invariably causes reduction of the lasing threshold. This assumption is tested on various photonic and plasmonic lasers, demonstrating that, while there is obvious correlation between the aforementioned factors and the laser threshold, the dependence is far from being straightforward and omnipresent. Depending on specific laser material and geometry, the threshold can decrease, increase, or stay unchanged whenβ‐factor,Q‐factor, andFpincrease. For the most part, the reduction of threshold is achieved simply by reducing the laser volume and this volume reduction can concurrently cause the increase inβ‐factor and/or Purcell factor, but it would be imprudent to say that the increase in either of these factors is the cause of the threshold reduction.

 
more » « less
Award ID(s):
1830886 1856515
NSF-PAR ID:
10385388
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Laser & Photonics Reviews
Volume:
15
Issue:
3
ISSN:
1863-8880
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Ecologists often invoke interspecific facilitation to help explain positive biodiversity–ecosystem function relationships in plant communities, but seldom test how it occurs. One mechanism through which one species may facilitate another is by ameliorating abiotic stress. Physiological experiments show that a chronic excess of light can cause stress that depresses carbon assimilation. If shading by a plant's neighbours reduces light stress enough, it may facilitate that plant's growth. If light is instead most often a limiting factor for photosynthesis, shading may have an adverse, competitive effect.

    In a temperate tree diversity experiment, we measured stem growth rates and photosynthetic physiology in broadleaf trees across a gradient of light availability imposed by their neighbours. At the extremes, trees experienced nearly full sun (monoculture), or were shaded by nearby fast‐growing conifers (shaded biculture).

    Most species had slower growth rates with larger neighbours, implying a net competitive effect. On the other hand, the two most shade‐tolerant species (Tilia americanaandAcer negundo) and the most shade‐intolerant one (Betula papyrifera) had faster stem growth rates with larger neighbours. The two shade‐tolerant species had the greatest increases in photoinhibition (reduced dark‐acclimatedFv/Fm) across the gradient of increasing light availability, which suggests they are more vulnerable to chronic light stress. While most species had lower carbon assimilation rates in the shaded biculture treatment,T. americanahad rates up to 25% higher.T. americanaalso dropped its leaves 3–4 weeks earlier in monocultures, curtailing its growing season.

    We conclude that although large neighbours can cause light limitation in shade‐intolerant species, they can also increase growth through abiotic stress amelioration in shade‐tolerant species. Finally, in shade‐intolerantB. papyrifera, we find a pattern of stem elongation in trees with larger neighbours, which suggests that a shade avoidance response may account for the apparent positive trend in stem volume.

    Synthesis. Both positive and negative species interactions in our experiment can be explained in large part by the photosynthetic responses of trees to the light environment created by their neighbours. We show that photosynthetic physiology can help explain the species interactions that underlie biodiversity–ecosystem function relationships. The insights that ecologists gain by searching for such physiological mechanisms may help us forecast species interactions under environmental change.

     
    more » « less
  2. Abstract

    The need for operational models describing the friction factorfin streams remains undisputed given its utility across a plethora of hydrological and hydraulic applications concerned with shallow inertial flows. For small-scale roughness elements uniformly covering the wetted parameter of a wide channel, the Darcy-Weisbachf = 8(u*/Ub)2is widely used at very high Reynolds numbers, whereu*is friction velocity related to the surface kinematic stress,Ub = Q/Ais bulk velocity,Qis flow rate, andAis cross-sectional area orthogonal to the flow direction. In natural streams, the presence of vegetation introduces additional complications to quantifyingf, the subject of the present work. Turbulent flow through vegetation are characterized by a number of coherent vortical structures: (i) von Karman vortex streets in the lower layers of vegetated canopies, (ii) Kelvin-Helmholtz as well as attached eddies near the vegetation top, and (iii) attached eddies well above the vegetated layer. These vortical structures govern the canonical mixing lengths for momentum transfer and their influence onfis to be derived. The main novelty is that the friction factor of vegetated flow can be expressed asfv = 4Cd(Uv/Ub)2whereUvis the spatially averaged velocity within the canopy volume, andCdis a local drag coefficient per unit frontal area derived to include the aforemontioned layer-wise effects of vortical structures within and above the canopy along with key vegetation properties. The proposed expression is compared with a number of empirical relations derived for vegetation under emergent and submerged conditions as well as numerous data sets covering a wide range of canopy morphology, densities, and rigidity. It is envisaged that the proposed formulation be imminently employed in eco-hydraulics where the interaction between flow and vegetation is being sought.

     
    more » « less
  3. Abstract Background

    In a recent study, we reported beam quality correction factors,fQ, in carbon ion beams using Monte Carlo (MC) methods for a cylindrical and a parallel‐plate ionization chamber (IC). A non‐negligible perturbation effect was observed; however, the magnitude of the perturbation correction due to the specific IC subcomponents was not included. Furthermore, the stopping power data presented in the International Commission on Radiation Units and Measurements (ICRU) report 73 were used, whereas the latest stopping power data have been reported in the ICRU report 90.

    Purpose

    The aim of this study was to extend our previous work by computingfQcorrection factors using the ICRU 90 stopping power data and by reporting IC‐specific perturbation correction factors. Possible energy or linear energy transfer (LET) dependence of thefQcorrection factor was investigated by simulating both pristine beams and spread‐out Bragg peaks (SOBPs).

    Methods

    The TOol for PArticle Simulation (TOPAS)/GEANT4 MC code was used in this study. A 30 × 30 × 50 cm3water phantom was simulated with a uniform 10 × 10 cm2parallel beam incident on the surface. A Farmer‐type cylindrical IC (Exradin A12) and two parallel‐plate ICs (Exradin P11 and A11) were simulated in TOPAS using the manufacturer‐provided geometrical drawings. ThefQcorrection factor was calculated in pristine carbon ion beams in the 150–450 MeV/u energy range at 2 cm depth and in the middle of the flat region of four SOBPs. ThekQcorrection factor was calculated by simulating thefQocorrection factor in a60Co beam at 5 cm depth. The perturbation correction factors due to the presence of the individual IC subcomponents, such as the displacement effect in the air cavity, collecting electrode, chamber wall, and chamber stem, were calculated at 2 cm depth for monoenergetic beams only. Additionally, the mean dose‐averaged and track‐averaged LET was calculated at the depths at which thefQwas calculated.

    Results

    The ICRU 90fQcorrection factors were reported. Thepdiscorrection factor was found to be significant for the cylindrical IC with magnitudes up to 1.70%. The individual perturbation corrections for the parallel‐plate ICs were <1.0% except for the A11pcelcorrection at the lowest energy. ThefQcorrection for the P11 IC exhibited an energy dependence of >1.00% and displayed differences up to 0.87% between pristine beams and SOBPs. Conversely, thefQfor A11 and A12 displayed a minimal energy dependence of <0.50%. The energy dependence was found to manifest in the LET dependence for the P11 IC. A statistically significant LET dependence was found only for the P11 IC in pristine beams only with a magnitude of <1.10%.

    Conclusions

    The perturbation andkQcorrection factor should be calculated for the specific IC to be used in carbon ion beam reference dosimetry as a function of beam quality.

     
    more » « less
  4. Key points

    Heart failure (HF), the leading cause of death in developed countries, occurs in the setting of reduced (HFrEF) or preserved (HFpEF) ejection fraction. Unlike HFrEF, there are no effective treatments for HFpEF, which accounts for ∼50% of heart failure.

    Abnormal intracellular calcium dynamics in cardiomyocytes have major implications for contractility and rhythm, but compared to HFrEF, very little is known about calcium cycling in HFpEF.

    We used rat models of HFpEF and HFrEF to reveal distinct differences in intracellular calcium regulation and excitation‐contraction (EC) coupling.

    While HFrEF is characterized by defective EC coupling at baseline, HFpEF exhibits enhanced coupling fidelity, further aggravated by a reduction in β‐adrenergic sensitivity.

    These differences in EC coupling and β‐adrenergic sensitivity may help explain why therapies that work in HFrEF are ineffective in HFpEF.

    Abstract

    Heart failure with reduced or preserved ejection fraction (respectively, HFrEF and HFpEF) is the leading cause of death in developed countries. Although numerous therapies improve outcomes in HFrEF, there are no effective treatments for HFpEF. We studied phenotypically verified rat models of HFrEF and HFpEF to compare excitation‐contraction (EC) coupling and protein expression in these two forms of heart failure. Dahl salt‐sensitive rats were fed a high‐salt diet (8% NaCl) from 7 weeks of age to induce HFpEF. Impaired diastolic relaxation and preserved ejection fraction were confirmed in each animal echocardiographically, and clinical signs of heart failure were documented. To generate HFrEF, Sprague‐Dawley (SD) rats underwent permanent left anterior descending coronary artery ligation which, 8–10 weeks later, led to systolic dysfunction (verified echocardiographically) and clinical signs of heart failure. Calcium (Ca2+) transients were measured in isolated cardiomyocytes under field stimulation or patch clamp. Ultra‐high‐speed laser scanning confocal imaging captured Ca2+sparks evoked by voltage steps. Western blotting and PCR were used to assay changes in EC coupling protein and RNA expression. Cardiomyocytes from rats with HFrEF exhibited impaired EC coupling, including decreased Ca2+transient (CaT) amplitude and defective couplon recruitment, associated with transverse (t)‐tubule disruption. In stark contrast, HFpEF cardiomyocytes showed saturated EC coupling (increasedICa, high probability of couplon recruitment with greater Ca2+release synchrony, increased CaT) and preserved t‐tubule integrity. β‐Adrenergic stimulation of HFpEF myocytes with isoprenaline (isoproterenol) failed to elicit robust increases inICaor CaT and relaxation kinetics. Fundamental differences in EC coupling distinguish HFrEF from HFpEF.

     
    more » « less
  5. Abstract

    We present a computational study of Purcell factor enhancement for a novel hybrid-plasmonic ring resonator using a novel implementation of the body-of-revolution (BOR) finite-difference time-domain (FDTD) method. In this hybrid structure, a dielectric slot ring is surrounded by a metallic ring such that a hybrid plasmonic mode is generated within two thin low-index gaps. The surrounding metallic ring decreases the binding loss for small ring radii, leading to high-quality factors and mode-field confinement. The hybrid resonator shows high quality-factor values above 103and small mode volumes down to103λn3simultaneously, thus providing large Purcell factors (Fp> 104). The distributed strong confinement within two gaps renders the proposed resonator useful for multi-emitter applications.

     
    more » « less