skip to main content


Title: Weak Supervision Network Embedding for Constrained Graph Learning
Constrained learning, a weakly supervised learning task, aims to incorporate domain constraints to learn models without requiring labels for each instance. Because weak supervision knowledge is useful and easy to obtain, constrained learning outperforms unsupervised learning in performance and is preferable than supervised learning in terms of labeling costs. To date, constrained learning, especially constrained clustering, has been extensively studied, but was primarily focused on data in the Euclidean space. In this paper, we propose a weak supervision network embedding (WSNE) for constrained learning of graphs. Because no label is available for individual nodes, we propose a new loss function to quantify the constraint-based loss, and integrate this loss in a graph convolutional neural network (GCN) and variational graph auto-encoder (VGAE) combined framework to jointly model graph structures and node attributes. The joint optimization allows WSNE to learn embedding not only preserving network topology and content, but also satisfying the constraints. Experiments show that WSNE outperforms baselines for constrained graph learning tasks, including constrained graph clustering and constrained graph classification.  more » « less
Award ID(s):
1763452 1828181
NSF-PAR ID:
10275807
Author(s) / Creator(s):
; ; ;
Editor(s):
Karlapalem, Kamal; Cheng, Hong; Ramakrishnan, Naren; null; null; Reddy, P. Krishna; Srivastava, Jaideep; Chakraborty, Tanmoy
Date Published:
Journal Name:
Proc. of the Advances in Knowledge Discovery and Data Mining. PAKDD 2021. Lecture Notes in Computer Science
Volume:
12712
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Networks have been widely used to represent the relations between objects such as academic networks and social networks, and learning embedding for networks has thus garnered plenty of research attention. Self-supervised network representation learning aims at extracting node embedding without external supervision. Recently, maximizing the mutual information between the local node embedding and the global summary (e.g. Deep Graph Infomax, or DGI for short) has shown promising results on many downstream tasks such as node classification. However, there are two major limitations of DGI. Firstly, DGI merely considers the extrinsic supervision signal (i.e., the mutual information between node embedding and global summary) while ignores the intrinsic signal (i.e., the mutual dependence between node embedding and node attributes). Secondly, nodes in a real-world network are usually connected by multiple edges with different relations, while DGI does not fully explore the various relations among nodes. To address the above-mentioned problems, we propose a novel framework, called High-order Deep Multiplex Infomax (HDMI), for learning node embedding on multiplex networks in a self-supervised way. To be more specific, we first design a joint supervision signal containing both extrinsic and intrinsic mutual information by high-order mutual information, and we propose a High- order Deep Infomax (HDI) to optimize the proposed supervision signal. Then we propose an attention based fusion module to combine node embedding from different layers of the multiplex network. Finally, we evaluate the proposed HDMI on various downstream tasks such as unsupervised clustering and supervised classification. The experimental results show that HDMI achieves state-of-the-art performance on these tasks. 
    more » « less
  2. The main objective of Personalized Tour Recommendation (PTR) is to generate a sequence of point-of-interest (POIs) for a particular tourist, according to the user-specific constraints such as duration time, start and end points, the number of attractions planned to visit, and so on. Previous PTR solutions are based on either heuristics for solving the orienteering problem to maximize a global reward with a specified budget or approaches attempting to learn user visiting preferences and transition patterns with the stochastic process or recurrent neural networks. However, existing learning methodologies rely on historical trips to train the model and use the next visited POI as the supervised signal, which may not fully capture the coherence of preferences and thus recommend similar trips to different users, primarily due to the data sparsity problem and long-tailed distribution of POI popularity. This work presents a novel tour recommendation model by distilling knowledge and supervision signals from the trips in a self-supervised manner. We propose Contrastive Trajectory Learning for Tour Recommendation (CTLTR), which utilizes the intrinsic POI dependencies and traveling intent to discover extra knowledge and augments the sparse data via pre-training auxiliary self-supervised objectives. CTLTR provides a principled way to characterize the inherent data correlations while tackling the implicit feedback and weak supervision problems by learning robust representations applicable for tour planning. We introduce a hierarchical recurrent encoder-decoder to identify tourists’ intentions and use the contrastive loss to discover subsequence semantics and their sequential patterns through maximizing the mutual information. Additionally, we observe that a data augmentation step as the preliminary of contrastive learning can solve the overfitting issue resulting from data sparsity. We conduct extensive experiments on a range of real-world datasets and demonstrate that our model can significantly improve the recommendation performance over the state-of-the-art baselines in terms of both recommendation accuracy and visiting orders. 
    more » « less
  3. Graphs/Networks are common in real-world applications where data have rich content and complex relationships. The increasing popularity also motivates many network learning algorithms, such as community detection, clustering, classification, and embedding learning, etc.. In reality, the large network volumes often hider a direct use of learning algorithms to the graphs. As a result, it is desirable to have the flexibility to condense a network to an arbitrary size, with well-preserved network topology and node content information. In this paper, we propose a graph compression network (GEN) to achieve network compression and embedding at the same time. Our theme is to leverage the network topology to find node mappings, such that densely connected nodes, including their node content, are compressed as a new node, with a latent vector (i.e. embedding) being learned to represent the compressed node. In addition to compression learning, we also develop a novel encoding-decoding framework, using feature diffusion process, to "decompress" the condensed network. Different from traditional graph convolution which uses direct-neighbor message passing, our decompression advocates high-order message passing within compressed nodes to learning feature representation for all nodes in the network. A unique strength of GEN is that it leverages the graph neural network principle to learn mapping automatically, so one can compress a network to an arbitrary size, and also decompress it to the original node space with minimum information loss. Experiments and comparisons confirm that GEN can automatically find clusters and communities, and compress them as new nodes. Results also show that GEN achieves improved performance for numerous tasks, including graph classification and node clustering. 
    more » « less
  4. Attributed network embedding aims to learn lowdimensional vector representations for nodes in a network, where each node contains rich attributes/features describing node content. Because network topology structure and node attributes often exhibit high correlation, incorporating node attribute proximity into network embedding is beneficial for learning good vector representations. In reality, large-scale networks often have incomplete/missing node content or linkages, yet existing attributed network embedding algorithms all operate under the assumption that networks are complete. Thus, their performance is vulnerable to missing data and suffers from poor scalability. In this paper, we propose a Scalable Incomplete Network Embedding (SINE) algorithm for learning node representations from incomplete graphs. SINE formulates a probabilistic learning framework that separately models pairs of node-context and node-attribute relationships. Different from existing attributed network embedding algorithms, SINE provides greater flexibility to make the best of useful information and mitigate negative effects of missing information on representation learning. A stochastic gradient descent based online algorithm is derived to learn node representations, allowing SINE to scale up to large-scale networks with high learning efficiency. We evaluate the effectiveness and efficiency of SINE through extensive experiments on real-world networks. Experimental results confirm that SINE outperforms state-of-the-art baselines in various tasks, including node classification, node clustering, and link prediction, under settings with missing links and node attributes. SINE is also shown to be scalable and efficient on large-scale networks with millions of nodes/edges and high-dimensional node features. 
    more » « less
  5. Multi-graph clustering aims to improve clustering accuracy by leveraging information from different domains, which has been shown to be extremely effective for achieving better clustering results than single graph based clustering algorithms. Despite the previous success, existing multi-graph clustering methods mostly use shallow models, which are incapable to capture the highly non-linear structures and the complex cluster associations in multigraph, thus result in sub-optimal results. Inspired by the powerful representation learning capability of neural networks, in this paper, we propose an end-to-end deep learning model to simultaneously infer cluster assignments and cluster associations in multi-graph. Specifically, we use autoencoding networks to learn node embeddings. Meanwhile, we propose a minimum-entropy based clustering strategy to cluster nodes in the embedding space for each graph. We introduce two regularizers to leverage both within-graph and cross-graph dependencies. An attentive mechanism is further developed to learn cross-graph cluster associations. Through extensive experiments on a variety of datasets, we observe that our method outperforms state-of-the-art baselines by a large margin. 
    more » « less