skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Title: Especie nueva de Weinmannia (Cunoniaceae) de los Bosques andinos altimontanos de La Paz, Bolivia
Weinmannia epicae is described and illustrated. It grows in Andean high-montane forests of the Yungas region in the department of La Paz, northwestern Bolivia, between 2900 and 3300 m. It differs from other morphologically similar species as W. cundinamarcensis, W. haenkeana and W. pubescens by having the maximum number of leaflets pairs usually between 10 to 14, medial leaflets of 1.3 to 2.3 cm, with more or less rough surface and undersurfaces with hirsute to hirsute-villous indument, and mature capsules villous-pubescent of 5-7 × 1.8-2.7 mm, conspicuously pedicellated. The differences with morphological similar species are pointed out, and information on their geographical distribution, ecology, phenology and the assessment of conservation status according to IUCN criteria are provided.  more » « less
Award ID(s):
1836353
NSF-PAR ID:
10276456
Author(s) / Creator(s):
Date Published:
Journal Name:
Darwiniana, nueva serie
Volume:
9
Issue:
1
ISSN:
0011-6793
Page Range / eLocation ID:
139 to 146
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    From a geometrical point of view, a non-sessile leaf is composed of two parts: a large flat plate called the lamina, and a long beam called the petiole which connects the lamina to the branch/stem. While wind is exerting force (e.g. drag) on the lamina, the petiole undergoes twisting and bending motions. To survive in harsh abiotic conditions, leaves may have evolved to form in different shapes, resulting from a coupling between the lamina geometry and the petiole mechanical properties. In this study, we measure the shape of laminae from 120 simple leaf species (no leaflets). Leaves of the same species are found to be geometrically similar regardless of their size. From tensile/torsional tests, we characterize the bending rigidity (EI) and the twisting rigidity (GJ) of 15 petioles of 4 species in the Spring/Summer: Red Oak (Quercus Rubra), American Sycamore (Platanus occidentalis), Yellow Poplar (Liriodendron tulipifera), and Sugar Maple (Acer saccharum). A twist-to-bend ratioEI/GJis found to be around 4.3, within the range in previous studies conducted on similar species (EI/GJ = 2.7~8.0 reported in S. Vogel, 1992). In addition, we develop a simple energetic model to find a relation between geometrical shapes and mechanical properties (EI/GJ = 2LL/WCwhereLLis the laminar length andWCis the laminar width), verified with experimental data. Lastly, we discuss leaf’s ability to reduce stress at the stem-petiole junction by choosing certain geometry, and also present exploratory results on the effect that seasons have on the Young’s and twisting moduli.

     
    more » « less
  2. Abstract The fossil record of Marsilea is challenging to assess, due in part to unreliable reports and conflicting opinions regarding the proper application of the names Marsilea and Marsileaceaephyllum to fossil leaves and leaflets similar to those of modern Marsilea . Specimens examined for this study include material assigned to Marsileaceaephyllum johnhallii , purportedly the oldest fossil record of a Marsilea -like sporophyte from the Lower Cretaceous of the Dakota Formation, Kansas, U.S.A.; leaves and leaf whorls of the extinct aquatic angiosperm Fortuna from several Late Cretaceous and Paleocene localities in western North America; and leaves and leaflets resembling Marsilea from the Eocene Green River Formation, Colorado and Utah, U.S.A. Literature on the fossil record of Marsilea was also reviewed. As a result, several taxonomic changes are proposed. Marsileaceaephyllum johnhallii is reinterpreted as an aquatic angiosperm that shares some architectural features with the genus Fortuna , although Marsileaceaephyllum is here maintained as a distinct genus with an emended diagnosis; under this reinterpretation, the name Marsileaceaephyllum can no longer be applied to sporophyte organs with affinities to Marsileaceae. Three valid fossil Marsilea species are recognized on the basis of sporophyte material that includes characteristic quadrifoliolate leaves and reticulate-veined leaflets: Marsilea campanica (J. Kvaček & Herman) Hermsen, comb. nov., from the Upper Cretaceous Grünbach Formation, Austria; Marsilea mascogos Estrada-Ruiz et al., from the Upper Cretaceous Olmos Formation, Mexico; and Marsilea sprungerorum Hermsen, sp. nov., from the Eocene Green River Formation, U.S.A. The species are distinguished from one another based on leaflet dimensions. Leaves from the Eocene Wasatch Formation, U.S.A., are transferred from Marsileaceaephyllum back to Marsilea , although not assigned to a fossil species. Finally, an occurrence of Marsilea from the Oligocene of Ethiopia is reassigned to Salvinia . A critical evaluation of the fossil record of Marsilea thus indicates that (1) the oldest fossil marsileaceous sporophytes bearing Marsilea -like leaves are from the Campanian; (2) only four credible records of sporophyte material attributable to Marsilea are known; and (3) the oldest dispersed Marsilea spores are known from the Oligocene. 
    more » « less
  3. null (Ed.)
    The plasma membrane of eukaryotic cells is known to be compositionally asymmetric. Certain phospholipids, such as sphingomyelin and phosphatidylcholine species, are predominantly localized in the outer leaflet, while phosphatidylethanolamine and phosphatidylserine species primarily reside in the inner leaflet. While phospholipid asymmetry between the membrane leaflets is well established, there is no consensus about cholesterol distribution between the two leaflets. We have performed a systematic study, via molecular simulations, of how the spatial distribution of cholesterol molecules in different “asymmetric” lipid bilayers are affected by the lipids’ backbone, head-type, unsaturation, and chain-length by considering an asymmetric bilayer mimicking the plasma membrane lipids of red blood cells, as well as seventeen other asymmetric bilayers comprising of different lipid types. Our results reveal that the distribution of cholesterol in the leaflets is solely a function of the extent of ordering of the lipids within the leaflets. The ratio of the amount of cholesterol matches the ratio of lipid order in the two leaflets, thus providing a quantitative relationship between the two. These results are understood by the observation that asymmetric bilayers with equimolar amount of lipids in the two leaflets develop tensile and compressive stresses due to differences in the extent of lipid order. These stresses are alleviated by the transfer of cholesterol from the leaflet in compressive stress to the one in tensile stress. These findings are important in understanding the biology of the cell membrane, especially with regard to the composition of the membrane leaflets. 
    more » « less
  4. Abstract

    Floral volatiles play key roles as signaling agents that mediate interactions between plants and animals. Despite their importance, few studies have investigated broad patterns of volatile variation across groups of plants that share pollinators, particularly in a phylogenetic context. The “perfume flowers,” Neotropical plant species exhibiting exclusive pollination by male euglossine bees in search of chemical rewards, present an intriguing system to investigate these patterns due to the unique function of their chemical phenotypes as both signaling agents and rewards. We leverage recently developed phylogenies and knowledge of biosynthesis, along with decades of chemical ecology research, to characterize axes of variation in the chemistry of perfume flowers, as well as understand their evolution at finer taxonomic scales. We detect pervasive chemical convergence, with many species across families exhibiting similar volatile phenotypes. Scent profiles of most species are dominated by compounds of either the phenylpropanoid or terpenoid biosynthesis pathways, while terpenoid compounds drive more subtle axes of variation. We find recapitulation of these patterns within two independent radiations of perfume flower orchids, in which we further detect evidence for the rapid evolution of divergent floral chemistries, consistent with the putative importance of scent in the process of adaptation and speciation.

     
    more » « less
  5. Many cellular lipid bilayers consist of leaflets that differ in their lipid composition — a non-equilibrium state actively maintained by cellular sorting processes that counter passive lipid flip-flop. While this lipidomic aspect of membrane asymmetry has been known for half a century, its elastic and thermodynamic ramifications have garnered attention only fairly recently. Notably, the torque arising when lipids of different spontaneous curvature reside in the two leaflets can be counterbalanced by a difference in lateral mechanical stress between them. Such membranes can be essentially flat in their relaxed state, despite being compositionally strongly asymmetric, but they harbor a surprisingly large but macroscopically invisible differential stress. This hidden stress can affect a wide range of other membrane properties, such as the resistance to bending, the nature of phase transitions in its leaflets, and the distribution of flippable species, most notably sterols. In this short note we offer a concise overview of our recently proposed basic framework for capturing the interplay between curvature, lateral stress, leaflet phase behavior, and cholesterol distribution in generally asymmetric membranes, and how its implied signatures might be used to learn more about the hidden but physically consequential differential stress. 
    more » « less