skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Probabilistic error estimation for non-intrusive reduced models learned from data of systems governed by linear parabolic partial differential equations
This work derives a residual-based a posteriori error estimator for reduced models learned with non-intrusive model reduction from data of high-dimensional systems governed by linear parabolic partial differential equations with control inputs. It is shown that quantities that are necessary for the error estimator can be either obtained exactly as the solutions of least-squares problems in a non-intrusive way from data such as initial conditions, control inputs, and high-dimensional solution trajectories or bounded in a probabilistic sense. The computational procedure follows an offline/online decomposition. In the offline (training) phase, the high-dimensional system is judiciously solved in a black-box fashion to generate data and to set up the error estimator. In the online phase, the estimator is used to bound the error of the reduced-model predictions for new initial conditions and new control inputs without recourse to the high-dimensional system. Numerical results demonstrate the workflow of the proposed approach from data to reduced models to certified predictions.  more » « less
Award ID(s):
1901091
PAR ID:
10276873
Author(s) / Creator(s):
;
Date Published:
Journal Name:
ESAIM: Mathematical Modelling and Numerical Analysis
Volume:
55
Issue:
3
ISSN:
0764-583X
Page Range / eLocation ID:
735 to 761
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This paper presents a framework to refine identified artificial neural networks (ANN) based state-space linear parametervarying (LPV-SS) models with closed-loop data using online transfer learning. An LPV-SS model is assumed to be first identified offline using inputs/outputs data and a model predictive controller (MPC) designed based on this model. Using collected closed-loop batch data, the model is further refined using online transfer learning and thus the control performance is improved. Specifically, fine-tuning, a transfer learning technique, is employed to improve the model. Furthermore, the scenario where the offline identified model and the online controlled system are “similar but not identitical” is discussed. The proposed method is verified by testing on an experimentally validated high-fidelity reactivity controlled compression ignition (RCCI) engine model. The verification results show that the new online transfer learning technique combined with an adaptive MPC law improves the engine control performance to track requested engine loads and desired combustion phasing with minimum errors. 
    more » « less
  2. null (Ed.)
    Abstract This paper presents a framework to refine identified artificial neural networks (ANN) based state-space linear parameter-varying (LPV-SS) models with closed-loop data using online transfer learning. An LPV-SS model is assumed to be first identified offline using inputs/outputs data and a model predictive controller (MPC) designed based on this model. Using collected closed-loop batch data, the model is further refined using online transfer learning and thus the control performance is improved. Specifically, fine-tuning, a transfer learning technique, is employed to improve the model. Furthermore, the scenario where the offline identified model and the online controlled system are “similar but not identitical” is discussed. The proposed method is verified by testing on an experimentally validated high-fidelity reactivity controlled compression ignition (RCCI) engine model. The verification results show that the new online transfer learning technique combined with an adaptive MPC law improves the engine control performance to track requested engine loads and desired combustion phasing with minimum errors. 
    more » « less
  3. In this article, we tackle the estimation and inference problem of analyzing distributed streaming data that is collected continuously over multiple data sites. We propose an online two‐way approach via linear mixed‐effects models. We explicitly model the site‐specific effects as random‐effect terms, and tackle both between‐site heterogeneity and within‐site correlation. We develop an online updating procedure that does not need to re‐access the previous data and can efficiently update the parameter estimate, when either new data sites, or new streams of sample observations of the existing data sites, become available. We derive the non‐asymptotic error bound for our proposed online estimator, and show that it is asymptotically equivalent to the offline counterpart based on all the raw data. We compare with some key alternative solutions both analytically and numerically, and demonstrate the advantages of our proposal. We further illustrate our method with two data applications. 
    more » « less
  4. null (Ed.)
    Biological research often involves testing a growing number of null hypotheses as new data are accumulated over time. We study the problem of online control of the familywise error rate, that is testing an a priori unbounded sequence of hypotheses ( p-values) one by one over time without knowing the future, such that with high probability there are no false discoveries in the entire sequence. This paper unifies algorithmic concepts developed for offline (single batch) familywise error rate control and online false discovery rate control to develop novel online familywise error rate control methods. Though many offline familywise error rate methods (e.g., Bonferroni, fallback procedures and Sidak’s method) can trivially be extended to the online setting, our main contribution is the design of new, powerful, adaptive online algorithms that control the familywise error rate when the p-values are independent or locally dependent in time. Our numerical experiments demonstrate substantial gains in power, that are also formally proved in an idealized Gaussian sequence model. A promising application to the International Mouse Phenotyping Consortium is described. 
    more » « less
  5. Realistic wind data are essential in developing, testing, and ensuring the safety of unmanned aerial systems in operation. Alternatives to Dryden and von Kármán turbulence models are required, aimed explicitly at urban air spaces to generate turbulent wind data. We present a novel method to generate realistic wind data for the safe operation of small unmanned aerial vehicles in urban spaces. We propose a non-intrusive reduced order modeling approach to replicate realistic wind data and predict wind fields. The method uses a well-established large-eddy simulation model, the parallelized large eddy simulation model, to generate high-fidelity data. To create a reduced-order model, we utilize proper orthogonal decomposition to extract modes from the three-dimensional space and use specialized recurrent neural networks and long-term short memory for stepping in time. This paper combines the traditional approach of using computational fluid dynamic simulations to generate wind data with deep learning and reduced-order modeling techniques to devise a methodology for a non-intrusive data-based model for wind field prediction. A simplistic model of an isolated urban subspace with a single building setup in neutral atmospheric conditions is considered a test case for the demonstration of the method. 
    more » « less