Hurricanes can alter the rates and trajectories of biogeochemical cycling in coastal wetlands. Defoliation and vegetation death can lead to increased soil temperatures, and storm surge can variously cause erosion or deposition of sediment leading to changes in soil bulk density, nutrient composition, and redox characteristics. The objective of this study was to compare the biogeochemistry of pre-storm soils and a carbonate-rich sediment layer deposited by Hurricane Irma that made landfall in southwest Florida as a category 3 storm in September 2017. We predicted that indicators of biogeochemical activity (e.g., potential soil respiration rates, microbial biomass (MBC), and extracellular enzyme activities) would be lower in the storm sediment layer because of its lower organic matter content relative to pre-storm soils. There were few differences between the storm sediment and pre-storm soils at two of the sites closest to the Gulf of Mexico (GOM). This suggests that marine deposition regularly influences soil formation at these sites and is not something that occurs only during hurricanes. At a third site, 8 km from the GOM, the pre-storm soils had much greater concentrations of organic matter, total N, total P, MBC, and higher potential respiration rates than the storm layer. At this same site, CO2 fluxes from intact soil cores containing a layer of storm sediment were 30% lower than those without it. This suggests that sediment deposition from storm surge has the potential to preserve historically sequestered carbon in coastal soils through reduced respiratory losses.
more »
« less
Microbial Respiration and Enzyme Activity Downstream from a Phosphorus Source in the Everglades, Florida, USA
Northeast Shark River Slough (NESS), lying at the northeastern perimeter of Everglades National Park (ENP), Florida, USA, has been subjected to years of hydrologic modifications. Construction of the Tamiami Trail (US 41) in 1928 connected the east and west coasts of SE Florida and essentially created a hydrological barrier to southern sheet flow into ENP. Recently, a series of bridges were constructed to elevate a portion of Tamiami Trail, allow more water to flow under the bridges, and attempt to restore the ecological balance in the NESS and ENP. This project was conducted to determine aspects of soil physiochemistry and microbial dynamics in the NESS. We evaluated microbial respiration and enzyme assays as indicators of nutrient dynamics in NESS soils. Soil cores were collected from sites at certain distances from the inflow (near canal, NC (0–150 m); midway, M (150–600 m); and far from canal, FC (600–1200 m)). Soil slurries were incubated and assayed for CO2 emission and β-glucoside (MUFC) or phosphatase (MUFP) activity in concert with physicochemical analysis. Significantly higher TP contents at NC (2.45 times) and M (1.52 times) sites than FC sites indicated an uneven P distribution downstream from the source canal. The highest soil organic matter content (84%) contents were observed at M sites, which was due to higher vegetation biomass observed at those sites. Consequently, CO2 efflux was greater at M sites (average 2.72 µmoles g dw−1 h−1) than the other two sites. We also found that amendments of glucose increased CO2 efflux from all soils, whereas the addition of phosphorus did not. The results indicate that microbial respiration downstream of inflows in the NESS is not limited by P, but more so by the availability of labile C.
more »
« less
- PAR ID:
- 10276878
- Date Published:
- Journal Name:
- Land
- Volume:
- 10
- Issue:
- 7
- ISSN:
- 2073-445X
- Page Range / eLocation ID:
- 696
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
httpsessopenarchiveorgeditorial-board (Ed.)Building healthy soils that store more carbon and reduce greenhouse gas (GHG) emissions while increasing food security is a multi-pronged climate action for the world. This work examines affordable technologies for rapidly assessing soil surface efflux of carbon dioxide quickly and accurately at multiple locations over short time periods (approximately 1 hr) in agricultural fields. Soil carbon dioxide efflux or respiration rate is known to be a strong function of soil texture, moisture content, and temperature. Thus, spatiotemporal variation of the efflux signal is complex and dynamic, particularly when soil texture and irrigation patterns are heterogenous. We use a combination of computational modeling and empirical measurement to study this problem at the UC Merced Experimental Smart Farm, on a roughly 2 ha track of flood-irrigated land. Using computation model (Hydrus 1d), we simulate soil conditions and CO2 emissions for a variety of ambient temperature and irrigation conditions. We calibrated the model parameters using efflux data obtained during multiple sampling campaigns using low-cost CO2 efflux chambers. Results indicate that relatively elevated emissions occur as key soil pore pathways drain following irrigation events. The timing of these emissions depends strongly on soil texture, with tighter clayey soils causing more dramatic “hot moments” and more smoothly draining sandy soils. While initial campaigns were carried out by researchers, future campaigns are being planned in which robotic micro-tractors will be equipped with the CO2 chambers and maneuvered using path planning algorithms programmed to adequately characterize the field-scale CO2 efflux while performing their primary agricultural functions. In this context, the farmer can monitor and achieve compliance with GHG emission goals with a minimal time investment.more » « less
-
In 2019, we measured the Δ14C and δ13C of soil respired carbon dioxide (CO2) in Panamanian forests that are subject to either in situ experimental soil warming (4C above ambient temperature to 1.2 m depth) or in situ experimental drying (50% throughfall exclusion). The warming site and one drying site are both within the Barro Colorado Nature Monument in nearby and similar forests on similar soils, enabling direct comparison of warming and drying effects on soil CO2 efflux. A second drying experiment is on the northern side of the Panama Isthmus on infertile soils where mean annual precipitation is greater, representative of a broad geographic area of the tropics. Given the seasonality of these forests, we performed measurements at stages of the seasonal cycle for which we expected the largest variation in CO2 efflux between control and experimental plots based on previous studies – the wet season (October-December) and dry season (March/April) or dry-to-wet season transition (May). This dataset includes Δ14C and δ13C of in situ soil surface CO2 flux as well as CO2 flux rates, volumetric soil moisture, soil temperature, and calculated partitioning of the fraction of total soil respiration from heterotrophs vs roots at the time of isotope sampling in AllSites_SoilResp_14C_data.xlsx. This dataset also includes Δ14C and δ13C of bulk soil, density fractions, and CO2 respired during laboratory incubations in AllSites_bulk_soil14C.xlsx. Datafiles are also available in csv format.more » « less
-
Wetland restoration requires managing long‐term changes in hydroperiod and ecosystem functions. We quantified relationships among spatiotemporal variability in wetland hydrology and total phosphorus (TP) and its stoichiometric relationships with total organic carbon (TOC:TP) and total carbon (TC:TP) and total nitrogen (TN:TP) in water, flocculent organic matter (floc), periphyton, sawgrass (Cladium jamaicense), and soil during early phases of freshwater wetland restoration—water year (WY) 2016 (1 May, 2015 to 30 April, 2016) to WY 2019—in Everglades National Park (ENP, Homestead, FL, U.S.A.). Wetland hydroperiod increased by 87 days, following restoration actions and rainfall events that increased median stage in the upstream source canal. Concentrations of TP were highest and most variable at sites closest (<1 km) to canal inputs and upstream wetland sources of legacy P. Surface water TOC:TP and TN:TP ratios were highest in wetlands >1 km downstream of the canal in wet season 2015 with spatial variability reflecting disturbances including droughts, fires, and freeze events. The TP concentrations of flocculent soil surface particles, periphyton, sawgrass, and consolidated soil declined, and TC:TP and TN:TP ratios increased (except soil) logarithmically with downstream distance from the canal. We measured abrupt increases in periphyton (wet season 2018) and sawgrass TP (wet season 2015 and 2018) at sites <1 km from the canal, likely reflecting legacy TP loading. Our results suggest restoration efforts that increase freshwater inflow and hydroperiod will likely change patterns of nutrient concentrations among water and organic matter compartments of wetlands as a function of nutrient legacies.more » « less
-
Soil respiration is the largest single efflux in the global carbon cycle and varies in complex ways with climate, vegetation, and soils. The suppressive effect of nitrogen (N) addition on soil respiration is well documented, but the extent to which it may be moderated by stand age or the availability of soil phosphorus (P) is not well understood. We quantified the response of soil respiration to manipulation of soil N and P availability in a full-factorial N x P fertilization experiment spanning 10 years in 13 northern hardwood forests in the White Mountains of New Hampshire, USA. We analyzed data for 2011 alone, to account for potential treatment effects unique to the first year of fertilization, and for three 3-year periods; data from each 3-year period was divided into spring, summer, and fall. Nitrogen addition consistently suppressed soil respiration by up to 14% relative to controls (p £ 0.01 for the main effect of N in 5 of 10 analysis periods). This response was tempered when P was also added, reducing the suppressive effect of N addition from 24 to 1% in one of the ten analysis periods (summer 2012–2014, p = 0.01 for the interaction of N and P). This interaction effect is consistent with observations of reduced foliar N and available soil N following P addition. Mid-successional stands (26–41 years old at the time of the first nutrient addition) consistently had the lowest rates of soil respiration across stand age classes (1.4–6.6 lmol CO2 m-2 s-1), and young stands had the highest (2.5–8.5 lmol CO2 m-2 s-1). In addition to these important effects of treatment and stand age, we observed an unexpected increase in soil respiration, which doubled in 10 years and was not explained by soil temperature patterns, nutrient additions, or increased in fine-root biomass.more » « less
An official website of the United States government

