skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Regional Brain Volumes Associated With Depression in the National Alzheimer’s Coordinating Center Uniform Data Set
Abstract Depression has been associated with greater risk of Alzheimer’s disease (AD), and existing research has identified structural differences in brain regions in depressed subjects compared to healthy samples, but results have been heterogeneous. We sought to determine the effect of depression on regional brain volumes by cognitive and APOE e4 status. Secondary analysis of the National Alzheimer’s Coordinating Center (NACC) Uniform Data Set was conducted using complete MRI data from 1,371 participants (mean age: 70.5; SD: 11.7). Multiple linear regression was used to estimate the adjusted effect of depression (via the Neuropsychiatric Inventory Questionnaire) on regional brain volumes through measurement of 30 structural MRIs. Depression in the prior two years was associated with lower total brain, cerebrum,, and gray matter volumes and greater total brain white matter hyperintensities (p<.05). Greater volumes were also observed in all ventricular volume measures. Lower mean volumes were observed in six additional frontal lobe and parietal lobe cortical regions. Alternately, depression antecedent to the past 2 years correlated only with occipital lobe gray matter volumes (right, left, total). Our findings suggest that depression in the prior two years is associated with atrophy across multiple brain regions and related ventricular enlargement, even after controlling for intracranial volume and demographic covariates. The duration of depression influences results, however, as depression prior to 2 years before assessment was correlated with significantly fewer and different regional brain volume changes.  more » « less
Award ID(s):
1920182
PAR ID:
10278161
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Innovation in Aging
Volume:
4
Issue:
Supplement_1
ISSN:
2399-5300
Page Range / eLocation ID:
371 to 371
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Anxiety has been associated with greater risk of Alzheimer’s disease (AD) and existing research has identified structural differences in regional brain tissue in anxious compared to healthy samples, but results have been variable and somewhat inconsistent. We sought to determine the effect of anxiety on regional brain volumes by cognitive and apolipoprotein e (APOE) e4 status using data from a large, national dataset. A secondary analysis of the National Alzheimer’s Coordinating Center Uniform (NACC) Data Set was conducted using complete MRI data from 1,371 participants (mean age: 70.5; SD: 11.7). Multiple linear regression was used to estimate the adjusted effect of anxiety (via the Neuropsychiatric Inventory Questionnaire) on regional brain volumes through measurement of 30 structural MRI biomarkers. Anxiety was associated with lower total brain and total cortical gray matter volumes and increased lateral ventricular volume (p<.05). Lower mean volumes were also observed in all hippocampal, frontal lobe, parietal lobe, temporal lobe, and right occipital lobe volumes among participants who reported anxiety. Conversely, greater ventricular volumes were also correlated with anxiety. Findings suggest that anxiety is associated with significant atrophy in multiple brain regions and ventricular enlargement, even after controlling for intracranial volume and demographic covariates. Anxiety-related changes to brain morphology may contribute to greater AD risk. 
    more » « less
  2. null (Ed.)
    Abstract Sleep disruption has been associated with increased beta-amyloid deposition and greater risk for later development of Alzheimer’s disease. Studies indicate that sleep disturbance correlates with regional brain volumes, but data are limited. We sought to determine the effect of sleep disturbance on regional brain volumes by cognitive and apolipoprotein e (APOE) e4 status. We conducted a secondary analysis of the National Alzheimer’s Coordinating Center (NACC) Uniform Data Set using complete structural imaging data from 1,371 participants (mean age: 70.5; SD: 11.7). Multiple linear regression was used to estimate the adjusted effect of sleep disturbance (via Neuropsychiatric Inventory Questionnaire) on regional brain volumes through measurement of 30 structural MRI biomarkers. Sleep disruption was associated with greater volumes in the right and left lateral ventricles and greater volume of total white matter hyperintensities (p<.05). Lower mean volumes in total brain, total gray matter, and total cerebrum grey matter volumes, and in 12 hippocampal, frontal, parietal, and temporal lobe volumes were observed among participants who reported sleep disturbance. Males, Hispanic participants, and those with less education were more likely to report sleep disruption. Cognitive status moderated the relationship between sleep disturbance and lateral ventricular volumes, while APOE e4 moderated the effect between sleep disturbance and parietal lobe volumes. These findings suggest that disrupted sleep is associated with atrophy across multiple brain regions and ventricular hydrocephalus ex vacuo, after controlling for intracranial volume and demographic covariates. The influence of cognition and APOE e4 status indicates that this relationship is affected by co-occurring physiological processes. 
    more » « less
  3. PurposeThis study examined relations between four late-life depression subgroups (recent, >2 years ago, chronic, no depression) and regional brain volumes using structural MRI data from the National Alzheimer’s Coordinating Center (n=1,551). Data AnalysisMultiple linear regressions evaluated the effects of depression on 30 MRI biomarkers, while moderation analyses assessed how APOE ε4 and depression shape the connections between cognitive status and brain structure volumes. ResultsAfter adjusting for covariates and applying Hochberg’s method, recent depression (< 2 years) was associated with reduced total cerebrum cranial volume and left frontal lobe cortical gray matter volume. Chronic depression correlated with larger right lateral ventricle volume. ConclusionThese findings suggest that recent depression is linked to brain atrophy across specific regions and ventricular enlargement. Future research should investigate age-related impacts on these associations and whether restoration of brain volume occurs after depressive symptoms subside. 
    more » « less
  4. Abstract Neural oscillations may be sensitive to aspects of brain maturation such as myelination and synaptic density changes. Better characterization of developmental trajectories and reliability is necessary for understanding typical and atypical neurodevelopment. Here, we examined reliability in 110 typically developing children and adolescents (aged 9–17 years) across 2.25 years. From 10 min of magnetoencephalography resting-state data, normalized source spectral power and intraclass correlation coefficients were calculated. We found sex-specific differences in global normalized power, with males showing age-related decreases in delta and theta, along with age-related increases in beta and gamma. Females had fewer significant age-related changes. Structural magnetic resonance imaging revealed that males had more total gray, subcortical gray, and cortical white matter volume. There were significant age-related changes in total gray matter volume with sex-specific and frequency-specific correlations to normalized power. In males, increased total gray matter volume correlated with increased theta and alpha, along with decreased gamma. Split-half reliability was excellent in all frequency bands and source regions. Test–retest reliability ranged from good (alpha) to fair (theta) to poor (remaining bands). While resting-state neural oscillations can have fingerprint-like quality in adults, we show here that neural oscillations continue to evolve in children and adolescents due to brain maturation and neurodevelopmental change. 
    more » « less
  5. Abstract Heavy alcohol consumption has been associated with brain atrophy, neuronal loss, and poorer white matter fiber integrity. However, there is conflicting evidence on whether light-to-moderate alcohol consumption shows similar negative associations with brain structure. To address this, we examine the associations between alcohol intake and brain structure using multimodal imaging data from 36,678 generally healthy middle-aged and older adults from the UK Biobank, controlling for numerous potential confounds. Consistent with prior literature, we find negative associations between alcohol intake and brain macrostructure and microstructure. Specifically, alcohol intake is negatively associated with global brain volume measures, regional gray matter volumes, and white matter microstructure. Here, we show that the negative associations between alcohol intake and brain macrostructure and microstructure are already apparent in individuals consuming an average of only one to two daily alcohol units, and become stronger as alcohol intake increases. 
    more » « less