skip to main content


Title: The time-scales probed by star formation rate indicators for realistic, bursty star formation histories from the FIRE simulations
ABSTRACT Understanding the rate at which stars form is central to studies of galaxy formation. Observationally, the star formation rates (SFRs) of galaxies are measured using the luminosity in different frequency bands, often under the assumption of a time-steady SFR in the recent past. We use star formation histories (SFHs) extracted from cosmological simulations of star-forming galaxies from the FIRE project to analyse the time-scales to which the H α and far-ultraviolet (FUV) continuum SFR indicators are sensitive. In these simulations, the SFRs are highly time variable for all galaxies at high redshift, and continue to be bursty to z = 0 in dwarf galaxies. When FIRE SFHs are partitioned into their bursty and time-steady phases, the best-fitting FUV time-scale fluctuates from its ∼10 Myr value when the SFR is time-steady to ≳100 Myr immediately following particularly extreme bursts of star formation during the bursty phase. On the other hand, the best-fitting averaging time-scale for H α is generally insensitive to the SFR variability in the FIRE simulations and remains ∼5 Myr at all times. These time-scales are shorter than the 100 and 10 Myr time-scales sometimes assumed in the literature for FUV and H α, respectively, because while the FUV emission persists for stellar populations older than 100 Myr, the time-dependent luminosities are strongly dominated by younger stars. Our results confirm that the ratio of SFRs inferred using H α versus FUV can be used to probe the burstiness of star formation in galaxies.  more » « less
Award ID(s):
1715216 1652522 1757792
NSF-PAR ID:
10278895
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
501
Issue:
4
ISSN:
0035-8711
Page Range / eLocation ID:
4812 to 4824
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We study the spatially resolved (sub-kpc) gas velocity dispersion (σ)–star formation rate (SFR) relation in the FIRE-2 (Feedback in Realistic Environments) cosmological simulations. We specifically focus on Milky Way-mass disc galaxies at late times (z ≈ 0). In agreement with observations, we find a relatively flat relationship, with σ ≈ 15–30 km s−1 in neutral gas across 3 dex in SFRs. We show that higher dense gas fractions (ratios of dense gas to neutral gas) and SFRs are correlated at constant σ. Similarly, lower gas fractions (ratios of gas to stellar mass) are correlated with higher σ at constant SFR. The limits of the σ–ΣSFR relation correspond to the onset of strong outflows. We see evidence of ‘on-off’ cycles of star formation in the simulations, corresponding to feedback injection time-scales of 10–100 Myr, where SFRs oscillate about equilibrium SFR predictions. Finally, SFRs and velocity dispersions in the simulations agree well with feedback-regulated and marginally stable gas disc (Toomre’s Q = 1) model predictions, and the simulation data effectively rule out models assuming that gas turns into stars at (low) constant efficiency (i.e. 1 per cent per free-fall time). And although the simulation data do not entirely exclude gas accretion/gravitationally powered turbulence as a driver of σ, it appears to be subdominant to stellar feedback in the simulated galaxy discs at z ≈ 0. 
    more » « less
  2. Abstract

    Recent discoveries of a significant population of bright galaxies at cosmic dawnz10have enabled critical tests of cosmological galaxy formation models. In particular, the bright end of the galaxys’ UV luminosity functions (UVLFs) appear higher than predicted by many models. Using approximately 25,000 galaxy snapshots at 8 ≤z≤ 12 in a suite of FIRE-2 cosmological “zoom-in” simulations from the Feedback in Realistic Environments (FIRE) project, we show that the observed abundance of UV-bright galaxies at cosmic dawn is reproduced in these simulations with a multichannel implementation of standard stellar feedback processes, without any fine-tuning. Notably, we find no need to invoke previously suggested modifications, such as a nonstandard cosmology, a top-heavy stellar initial mass function, or a strongly enhanced star formation efficiency. We contrast the UVLFs predicted by bursty star formation in these original simulations to those derived from star formation histories (SFHs) smoothed over prescribed timescales (e.g., 100 Myr). The comparison demonstrates that the strongly time-variable SFHs predicted by the FIRE simulations play a key role in correctly reproducing the observed, bright-end UVLFs at cosmic dawn: the bursty SFHs induce order-or-magnitude changes in the abundance of UV-bright (MUV≲ −20) galaxies atz≳ 10. The predicted bright-end UVLFs are consistent with both the spectroscopically confirmed population and the photometrically selected candidates. We also find good agreement between the predicted and observationally inferred integrated UV luminosity densities, which evolve more weakly with redshift in FIRE than suggested by some other models.

     
    more » « less
  3. ABSTRACT

    Recent observations and simulations indicate substantial evolution in the properties of galaxies with time, wherein rotationally supported and steady thin discs (like those frequently observed in the local Universe) emerge from galaxies that are clumpy, irregular, and have bursty star formation rates (SFRs). To better understand the progenitors of local disc galaxies, we carry out an analysis of three FIRE-2 simulated galaxies with a mass similar to the Milky Way at redshift z = 0. We show that all three galaxies transition from bursty to steady SFRs at a redshift between z = 0.5 and z = 0.8, and that this transition coincides with the rapid (≲1 Gyr) emergence of a rotationally supported interstellar medium (ISM). In the late phase with steady SFR, the rotational energy comprises ${\gtrsim }90{{\ \rm per\ cent}}$ of the total kinetic + thermal energy in the ISM, and is roughly half the gravitational energy. By contrast, during the early bursty phase, the ISM initially has a quasi-spheroidal morphology and its energetics are dominated by quasi-isotropic in- and outflows out of virial equilibrium. The subdominance of rotational support and out-of-equilibrium conditions at early times challenge the application of standard equilibrium disc models to high-redshift progenitors of Milky Way-like galaxies. We further find that the formation of a rotationally-supported ISM coincides with the onset of a thermal pressure supported inner circumgalactic medium (CGM). Before this transition, there is no clear boundary between the ISM and the inner CGM.

     
    more » « less
  4. ABSTRACT

    Star formation histories (SFHs) are integral to our understanding of galaxy evolution. We can study recent SFHs by comparing the star formation rate (SFR) calculated using different tracers, as each probes a different time-scale. We aim to calibrate a proxy for the present-day rate of change in SFR, dSFR/dt, which does not require full spectral energy distribution (SED) modelling and depends on as few observables as possible, to guarantee its broad applicability. To achieve this, we create a set of models in cigale and define an SFR change diagnostic as the ratio of the SFR averaged over the past 5 and 200 Myr, $\langle SFR_{\rm {5}} \rangle \big / \langle SFR_{\rm {200}} \rangle$, probed by the H α–FUV colour. We apply $\langle SFR_{\rm {5}} \rangle \big / \langle SFR_{\rm {200}} \rangle$ to the nearby spiral NGC 628 and find that its star formation activity has overall been declining in the recent past, with the spiral arms, however, maintaining a higher level of activity. The impact of the spiral arm structure is observed to be stronger on $\langle SFR_{\rm {5}} \rangle \big / \langle SFR_{\rm {200}} \rangle$ than on the star formation efficiency. In addition, increasing disc pressure tends to increase recent star formation, and consequently $\langle SFR_{\rm {5}} \rangle \big / \langle SFR_{\rm {200}} \rangle$. We conclude that $\langle SFR_{\rm {5}} \rangle \big / \langle SFR_{\rm {200}} \rangle$ is sensitive to the molecular gas content, spiral arm structure, and disc pressure. The $\langle SFR_{\rm {5}} \rangle \big / \langle SFR_{\rm {200}} \rangle$ indicator is general and can be used to reconstruct the recent SFH of any star-forming galaxy for which H α, FUV, and either mid- or far-IR photometry is available, without the need of detailed modelling.

     
    more » « less
  5. Abstract Radiative feedback (RFB) from stars plays a key role in galaxies, but remains poorly-understood. We explore this using high-resolution, multi-frequency radiation-hydrodynamics (RHD) simulations from the Feedback In Realistic Environments (FIRE) project. We study ultra-faint dwarf through Milky Way mass scales, including H+He photo-ionization; photo-electric, Lyman Werner, Compton, and dust heating; and single+multiple scattering radiation pressure (RP). We compare distinct numerical algorithms: ray-based LEBRON (exact when optically-thin) and moments-based M1 (exact when optically-thick). The most important RFB channels on galaxy scales are photo-ionization heating and single-scattering RP: in all galaxies, most ionizing/far-UV luminosity (∼1/2 of lifetime-integrated bolometric) is absorbed. In dwarfs, the most important effect is photo-ionization heating from the UV background suppressing accretion. In MW-mass galaxies, meta-galactic backgrounds have negligible effects; but local photo-ionization and single-scattering RP contribute to regulating the galactic star formation efficiency and lowering central densities. Without some RFB (or other “rapid” FB), resolved GMCs convert too-efficiently into stars, making galaxies dominated by hyper-dense, bound star clusters. This makes star formation more violent and “bursty” when SNe explode in these hyper-clustered objects: thus, including RFB “smoothes” SFHs. These conclusions are robust to RHD methods, but M1 produces somewhat stronger effects. Like in previous FIRE simulations, IR multiple-scattering is rare (negligible in dwarfs, $\sim 10\%$ of RP in massive galaxies): absorption occurs primarily in “normal” GMCs with AV ∼ 1. 
    more » « less