skip to main content


Title: Mining Text Outliers in Document Directories
Nowadays, it is common to classify collections of documents into (human-generated, domain-specific) directory structures, such as email or document folders. But documents may be classified wrongly, for a multitude of reasons. Then they are outlying w.r.t. the folder they end up in. Orthogonally to this, and more specifically, two kinds of errors can occur: (O) Out-of-distribution: the document does not belong to any existing folder in the directory; and (M) Misclassification: the document belongs to another folder. It is this specific combination of issues that we address in this article, i.e., we mine text outliers from massive document directories, considering both error types. We propose a new proximity-based algorithm, which we dub kj-Nearest Neighbors (kj-NN). Our algorithm detects text outliers by exploiting semantic similarities and introduces a self-supervision mechanism that estimates the relevance of the original labels. Our approach is efficient and robust to large proportions of outliers. kj-NN also promotes the interpretability of the results by proposing alternative label names and by finding the most similar documents for each outlier. Our real-world experiments demonstrate that our approach outperforms the competitors by a large margin.  more » « less
Award ID(s):
1956151 1741317 1704532
NSF-PAR ID:
10279820
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
ICDM'20: IEEE 2020 Int. Conf. on Data Mining, Nov. 2020
Volume:
2020
Issue:
1
Page Range / eLocation ID:
152 to 161
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Obeid, I. ; Selesnick, I. (Ed.)
    The Neural Engineering Data Consortium at Temple University has been providing key data resources to support the development of deep learning technology for electroencephalography (EEG) applications [1-4] since 2012. We currently have over 1,700 subscribers to our resources and have been providing data, software and documentation from our web site [5] since 2012. In this poster, we introduce additions to our resources that have been developed within the past year to facilitate software development and big data machine learning research. Major resources released in 2019 include: ● Data: The most current release of our open source EEG data is v1.2.0 of TUH EEG and includes the addition of 3,874 sessions and 1,960 patients from mid-2015 through 2016. ● Software: We have recently released a package, PyStream, that demonstrates how to correctly read an EDF file and access samples of the signal. This software demonstrates how to properly decode channels based on their labels and how to implement montages. Most existing open source packages to read EDF files do not directly address the problem of channel labels [6]. ● Documentation: We have released two documents that describe our file formats and data representations: (1) electrodes and channels [6]: describes how to map channel labels to physical locations of the electrodes, and includes a description of every channel label appearing in the corpus; (2) annotation standards [7]: describes our annotation file format and how to decode the data structures used to represent the annotations. Additional significant updates to our resources include: ● NEDC TUH EEG Seizure (v1.6.0): This release includes the expansion of the training dataset from 4,597 files to 4,702. Calibration sequences have been manually annotated and added to our existing documentation. Numerous corrections were made to existing annotations based on user feedback. ● IBM TUSZ Pre-Processed Data (v1.0.0): A preprocessed version of the TUH Seizure Detection Corpus using two methods [8], both of which use an FFT sliding window approach (STFT). In the first method, FFT log magnitudes are used. In the second method, the FFT values are normalized across frequency buckets and correlation coefficients are calculated. The eigenvalues are calculated from this correlation matrix. The eigenvalues and correlation matrix's upper triangle are used to generate feature. ● NEDC TUH EEG Artifact Corpus (v1.0.0): This corpus was developed to support modeling of non-seizure signals for problems such as seizure detection. We have been using the data to build better background models. Five artifact events have been labeled: (1) eye movements (EYEM), (2) chewing (CHEW), (3) shivering (SHIV), (4) electrode pop, electrostatic artifacts, and lead artifacts (ELPP), and (5) muscle artifacts (MUSC). The data is cross-referenced to TUH EEG v1.1.0 so you can match patient numbers, sessions, etc. ● NEDC Eval EEG (v1.3.0): In this release of our standardized scoring software, the False Positive Rate (FPR) definition of the Time-Aligned Event Scoring (TAES) metric has been updated [9]. The standard definition is the number of false positives divided by the number of false positives plus the number of true negatives: #FP / (#FP + #TN). We also recently introduced the ability to download our data from an anonymous rsync server. The rsync command [10] effectively synchronizes both a remote directory and a local directory and copies the selected folder from the server to the desktop. It is available as part of most, if not all, Linux and Mac distributions (unfortunately, there is not an acceptable port of this command for Windows). To use the rsync command to download the content from our website, both a username and password are needed. An automated registration process on our website grants both. An example of a typical rsync command to access our data on our website is: rsync -auxv nedc_tuh_eeg@www.isip.piconepress.com:~/data/tuh_eeg/ Rsync is a more robust option for downloading data. We have also experimented with Google Drive and Dropbox, but these types of technology are not suitable for such large amounts of data. All of the resources described in this poster are open source and freely available at https://www.isip.piconepress.com/projects/tuh_eeg/downloads/. We will demonstrate how to access and utilize these resources during the poster presentation and collect community feedback on the most needed additions to enable significant advances in machine learning performance. 
    more » « less
  2. Obeid, I. (Ed.)
    The Neural Engineering Data Consortium (NEDC) is developing the Temple University Digital Pathology Corpus (TUDP), an open source database of high-resolution images from scanned pathology samples [1], as part of its National Science Foundation-funded Major Research Instrumentation grant titled “MRI: High Performance Digital Pathology Using Big Data and Machine Learning” [2]. The long-term goal of this project is to release one million images. We have currently scanned over 100,000 images and are in the process of annotating breast tissue data for our first official corpus release, v1.0.0. This release contains 3,505 annotated images of breast tissue including 74 patients with cancerous diagnoses (out of a total of 296 patients). In this poster, we will present an analysis of this corpus and discuss the challenges we have faced in efficiently producing high quality annotations of breast tissue. It is well known that state of the art algorithms in machine learning require vast amounts of data. Fields such as speech recognition [3], image recognition [4] and text processing [5] are able to deliver impressive performance with complex deep learning models because they have developed large corpora to support training of extremely high-dimensional models (e.g., billions of parameters). Other fields that do not have access to such data resources must rely on techniques in which existing models can be adapted to new datasets [6]. A preliminary version of this breast corpus release was tested in a pilot study using a baseline machine learning system, ResNet18 [7], that leverages several open-source Python tools. The pilot corpus was divided into three sets: train, development, and evaluation. Portions of these slides were manually annotated [1] using the nine labels in Table 1 [8] to identify five to ten examples of pathological features on each slide. Not every pathological feature is annotated, meaning excluded areas can include focuses particular to these labels that are not used for training. A summary of the number of patches within each label is given in Table 2. To maintain a balanced training set, 1,000 patches of each label were used to train the machine learning model. Throughout all sets, only annotated patches were involved in model development. The performance of this model in identifying all the patches in the evaluation set can be seen in the confusion matrix of classification accuracy in Table 3. The highest performing labels were background, 97% correct identification, and artifact, 76% correct identification. A correlation exists between labels with more than 6,000 development patches and accurate performance on the evaluation set. Additionally, these results indicated a need to further refine the annotation of invasive ductal carcinoma (“indc”), inflammation (“infl”), nonneoplastic features (“nneo”), normal (“norm”) and suspicious (“susp”). This pilot experiment motivated changes to the corpus that will be discussed in detail in this poster presentation. To increase the accuracy of the machine learning model, we modified how we addressed underperforming labels. One common source of error arose with how non-background labels were converted into patches. Large areas of background within other labels were isolated within a patch resulting in connective tissue misrepresenting a non-background label. In response, the annotation overlay margins were revised to exclude benign connective tissue in non-background labels. Corresponding patient reports and supporting immunohistochemical stains further guided annotation reviews. The microscopic diagnoses given by the primary pathologist in these reports detail the pathological findings within each tissue site, but not within each specific slide. The microscopic diagnoses informed revisions specifically targeting annotated regions classified as cancerous, ensuring that the labels “indc” and “dcis” were used only in situations where a micropathologist diagnosed it as such. Further differentiation of cancerous and precancerous labels, as well as the location of their focus on a slide, could be accomplished with supplemental immunohistochemically (IHC) stained slides. When distinguishing whether a focus is a nonneoplastic feature versus a cancerous growth, pathologists employ antigen targeting stains to the tissue in question to confirm the diagnosis. For example, a nonneoplastic feature of usual ductal hyperplasia will display diffuse staining for cytokeratin 5 (CK5) and no diffuse staining for estrogen receptor (ER), while a cancerous growth of ductal carcinoma in situ will have negative or focally positive staining for CK5 and diffuse staining for ER [9]. Many tissue samples contain cancerous and non-cancerous features with morphological overlaps that cause variability between annotators. The informative fields IHC slides provide could play an integral role in machine model pathology diagnostics. Following the revisions made on all the annotations, a second experiment was run using ResNet18. Compared to the pilot study, an increase of model prediction accuracy was seen for the labels indc, infl, nneo, norm, and null. This increase is correlated with an increase in annotated area and annotation accuracy. Model performance in identifying the suspicious label decreased by 25% due to the decrease of 57% in the total annotated area described by this label. A summary of the model performance is given in Table 4, which shows the new prediction accuracy and the absolute change in error rate compared to Table 3. The breast tissue subset we are developing includes 3,505 annotated breast pathology slides from 296 patients. The average size of a scanned SVS file is 363 MB. The annotations are stored in an XML format. A CSV version of the annotation file is also available which provides a flat, or simple, annotation that is easy for machine learning researchers to access and interface to their systems. Each patient is identified by an anonymized medical reference number. Within each patient’s directory, one or more sessions are identified, also anonymized to the first of the month in which the sample was taken. These sessions are broken into groupings of tissue taken on that date (in this case, breast tissue). A deidentified patient report stored as a flat text file is also available. Within these slides there are a total of 16,971 total annotated regions with an average of 4.84 annotations per slide. Among those annotations, 8,035 are non-cancerous (normal, background, null, and artifact,) 6,222 are carcinogenic signs (inflammation, nonneoplastic and suspicious,) and 2,714 are cancerous labels (ductal carcinoma in situ and invasive ductal carcinoma in situ.) The individual patients are split up into three sets: train, development, and evaluation. Of the 74 cancerous patients, 20 were allotted for both the development and evaluation sets, while the remain 34 were allotted for train. The remaining 222 patients were split up to preserve the overall distribution of labels within the corpus. This was done in hope of creating control sets for comparable studies. Overall, the development and evaluation sets each have 80 patients, while the training set has 136 patients. In a related component of this project, slides from the Fox Chase Cancer Center (FCCC) Biosample Repository (https://www.foxchase.org/research/facilities/genetic-research-facilities/biosample-repository -facility) are being digitized in addition to slides provided by Temple University Hospital. This data includes 18 different types of tissue including approximately 38.5% urinary tissue and 16.5% gynecological tissue. These slides and the metadata provided with them are already anonymized and include diagnoses in a spreadsheet with sample and patient ID. We plan to release over 13,000 unannotated slides from the FCCC Corpus simultaneously with v1.0.0 of TUDP. Details of this release will also be discussed in this poster. Few digitally annotated databases of pathology samples like TUDP exist due to the extensive data collection and processing required. The breast corpus subset should be released by November 2021. By December 2021 we should also release the unannotated FCCC data. We are currently annotating urinary tract data as well. We expect to release about 5,600 processed TUH slides in this subset. We have an additional 53,000 unprocessed TUH slides digitized. Corpora of this size will stimulate the development of a new generation of deep learning technology. In clinical settings where resources are limited, an assistive diagnoses model could support pathologists’ workload and even help prioritize suspected cancerous cases. ACKNOWLEDGMENTS This material is supported by the National Science Foundation under grants nos. CNS-1726188 and 1925494. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. REFERENCES [1] N. Shawki et al., “The Temple University Digital Pathology Corpus,” in Signal Processing in Medicine and Biology: Emerging Trends in Research and Applications, 1st ed., I. Obeid, I. Selesnick, and J. Picone, Eds. New York City, New York, USA: Springer, 2020, pp. 67 104. https://www.springer.com/gp/book/9783030368432. [2] J. Picone, T. Farkas, I. Obeid, and Y. Persidsky, “MRI: High Performance Digital Pathology Using Big Data and Machine Learning.” Major Research Instrumentation (MRI), Division of Computer and Network Systems, Award No. 1726188, January 1, 2018 – December 31, 2021. https://www. isip.piconepress.com/projects/nsf_dpath/. [3] A. Gulati et al., “Conformer: Convolution-augmented Transformer for Speech Recognition,” in Proceedings of the Annual Conference of the International Speech Communication Association (INTERSPEECH), 2020, pp. 5036-5040. https://doi.org/10.21437/interspeech.2020-3015. [4] C.-J. Wu et al., “Machine Learning at Facebook: Understanding Inference at the Edge,” in Proceedings of the IEEE International Symposium on High Performance Computer Architecture (HPCA), 2019, pp. 331–344. https://ieeexplore.ieee.org/document/8675201. [5] I. Caswell and B. Liang, “Recent Advances in Google Translate,” Google AI Blog: The latest from Google Research, 2020. [Online]. Available: https://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html. [Accessed: 01-Aug-2021]. [6] V. Khalkhali, N. Shawki, V. Shah, M. Golmohammadi, I. Obeid, and J. Picone, “Low Latency Real-Time Seizure Detection Using Transfer Deep Learning,” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium (SPMB), 2021, pp. 1 7. https://www.isip. piconepress.com/publications/conference_proceedings/2021/ieee_spmb/eeg_transfer_learning/. [7] J. Picone, T. Farkas, I. Obeid, and Y. Persidsky, “MRI: High Performance Digital Pathology Using Big Data and Machine Learning,” Philadelphia, Pennsylvania, USA, 2020. https://www.isip.piconepress.com/publications/reports/2020/nsf/mri_dpath/. [8] I. Hunt, S. Husain, J. Simons, I. Obeid, and J. Picone, “Recent Advances in the Temple University Digital Pathology Corpus,” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium (SPMB), 2019, pp. 1–4. https://ieeexplore.ieee.org/document/9037859. [9] A. P. Martinez, C. Cohen, K. Z. Hanley, and X. (Bill) Li, “Estrogen Receptor and Cytokeratin 5 Are Reliable Markers to Separate Usual Ductal Hyperplasia From Atypical Ductal Hyperplasia and Low-Grade Ductal Carcinoma In Situ,” Arch. Pathol. Lab. Med., vol. 140, no. 7, pp. 686–689, Apr. 2016. https://doi.org/10.5858/arpa.2015-0238-OA. 
    more » « less
  3. Physical and digital documents often contain visually rich information. With such information, there is no strict order- ing or positioning in the document where the data values must appear. Along with textual cues, these documents often also rely on salient visual features to define distinct semantic boundaries and augment the information they disseminate. When performing information extraction (IE), traditional techniques fall short, as they use a text-only representation and do not consider the visual cues inherent to the layout of these documents. We propose VS2, a generalized approach for information extraction from heterogeneous visually rich documents. There are two major contributions of this work. First, we propose a robust segmentation algorithm that de- composes a visually rich document into a bag of visually iso- lated but semantically coherent areas, called logical blocks. Document type agnostic low-level visual and semantic fea- tures are used in this process. Our second contribution is a distantly supervised search-and-select method for identify- ing the named entities within these documents by utilizing the context boundaries defined by these logical blocks. Ex- perimental results on three heterogeneous datasets suggest that the proposed approach significantly outperforms its text-only counterparts on all datasets. Comparing it against the state-of-the-art methods also reveal that VS2 performs comparably or better on all datasets. 
    more » « less
  4. The task of temporal slot filling (TSF) is to extract values of specific attributes for a given entity, called “facts”, as well as temporal tags of the facts, from text data. While existing work denoted the temporal tags as single time slots, in this paper, we introduce and study the task of Precise TSF (PTSF), that is to fill two precise temporal slots including the beginning and ending time points. Based on our observation from a news corpus, most of the facts should have the two points, however, fewer than 0.1% of them have time expressions in the documents. On the other hand, the documents’ post time, though often available, is not as precise as the time expressions of being the time a fact was valid. Therefore, directly decomposing the time expressions or using an arbitrary post-time period cannot provide accurate results for PTSF. The challenge of PTSF lies in finding precise time tags in noisy and incomplete temporal contexts in the text. To address the challenge, we propose an unsupervised approach based on the philosophy of truth finding. The approach has two modules that mutually enhance each other: One is a reliability estimator of fact extractors conditionally on the temporal contexts; the other is a fact trustworthiness estimator based on the extractor’s reliability. Commonsense knowledge (e.g., one country has only one president at a specific time) was automatically generated from data and used for inferring false claims based on trustworthy facts. For the purpose of evaluation, we manually collect hundreds of temporal facts from Wikipedia as ground truth, including country’s presidential terms and sport team’s player career history. Experiments on a large news dataset demonstrate the accuracy and efficiency of our proposed algorithm. 
    more » « less
  5. Background: Text recycling (hereafter TR)—the reuse of one’s own textual materials from one document in a new document—is a common but hotly debated and unsettled practice in many academic disciplines, especially in the context of peer-reviewed journal articles. Although several analytic systems have been used to determine replication of text—for example, for purposes of identifying plagiarism—they do not offer an optimal way to compare documents to determine the nature and extent of TR in order to study and theorize this as a practice in different disciplines. In this article, we first describe TR as a common phenomenon in academic publishing, then explore the challenges associated with trying to study the nature and extent of TR within STEM disciplines. We then describe in detail the complex processes we used to create a system for identifying TR across large corpora of texts, and the sentence-level string-distance lexical methods used to refine and test the system (White & Joy, 2004). The purpose of creating such a system is to identify legitimate cases of TR across large corpora of academic texts in different fields of study, allowing meaningful cross-disciplinary comparisons in future analyses of published work. The findings from such investigations will extend and refine our understanding of discourse practices in academic and scientific settings. Literature Review: Text-analytic methods have been widely developed and implemented to identify reused textual materials for detecting plagiarism, and there is considerable literature on such methods. (Instead of taking up space detailing this literature, we point readers to several recent reviews: Gupta, 2016; Hiremath & Otari, 2014; and Meuschke & Gipp, 2013). Such methods include fingerprinting, term occurrence analysis, citation analysis (identifying similarity in references and citations), and stylometry (statistically comparing authors’ writing styles; see Meuschke & Gipp, 2013). Although TR occurs in a wide range of situations, recent debate has focused on recycling from one published research paper to another—particularly in STEM fields (see, for example, Andreescu, 2013; Bouville, 2008; Bretag & Mahmud, 2009; Roig, 2008; Scanlon, 2007). An important step in better understanding the practice is seeing how authors actually recycle material in their published work. Standard methods for detecting plagiarism are not directly suitable for this task, as the objective is not to determine the presence or absence of reuse itself, but to study the types and patterns of reuse, including materials that are syntactically but not substantively distinct—such as “patchwriting” (Howard, 1999). In the present account of our efforts to create a text-analytic system for determining TR, we take a conventional alphabetic approach to text, in part because we did not aim at this stage of our project to analyze non-discursive text such as images or other media. However, although the project adheres to conventional definitions of text, with a focus on lexical replication, we also subscribe to context-sensitive approaches to text production. The results of applying the system to large corpora of published texts can potentially reveal varieties in the practice of TR as a function of different discourse communities and disciplines. Writers’ decisions within what appear to be canonical genres are contingent, based on adherence to or deviation from existing rules and procedures if and when these actually exist. Our goal is to create a system for analyzing TR in groups of texts produced by the same authors in order to determine the nature and extent of TR, especially across disciplinary areas, without judgment of scholars’ use of the practice. 
    more » « less