skip to main content


Title: Disturbance structures canopy and understory productivity along an environmental gradient
Disturbances often disproportionately impact different vegetation layers in forests and other vertically stratified ecosystems, shaping community structure and ecosystem function. However, disturbance-driven changes may be mediated by environmental conditions that affect habitat quality and species interactions. In a decade-long field experiment, we tested how kelp forest net primary productivity (NPP) responds to repeated canopy loss along a gradient in grazing and substrate suitability. We discovered that habitat quality can mediate the effects of intensified disturbance on canopy and understory NPP. Experimental annual and quarterly disturbances suppressed total macroalgal NPP, but effects were strongest in high- quality habitats that supported dense kelp canopies that were removed by disturbance. Understory macroalgae partly compensated for canopy NPP losses and this effect magnified with increasing habitat quality. Disturbance-driven increases in understory NPP were still rising after 5-10 years of disturbance, demonstrating the value of long-term experimentation for understanding ecosystem responses to changing disturbance regimes.  more » « less
Award ID(s):
2023555 1831937
NSF-PAR ID:
10279871
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Ecology letters
ISSN:
1461-023X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A number of recent studies have documented long-term declines in abundances of important arthropod groups, primarily in Europe and North America. These declines are generally attributed to habitat loss, but a recent study [B.C. Lister, A. Garcia,Proc. Natl. Acad. Sci. USA115, E10397–E10406 (2018)] from the Luquillo Experimental Forest (LEF) in Puerto Rico attributed declines to global warming. We analyze arthropod data from the LEF to evaluate long-term trends within the context of hurricane-induced disturbance, secondary succession, and temporal variation in temperature. Our analyses demonstrate that responses to hurricane-induced disturbance and ensuing succession were the primary factors that affected total canopy arthropod abundances on host trees, as well as walkingstick abundance on understory shrubs. Ambient and understory temperatures played secondary roles for particular arthropod species, but populations were just as likely to increase as they were to decrease in abundance with increasing temperature. The LEF is a hurricane-mediated system, with major hurricanes effecting changes in temperature that are larger than those induced thus far by global climate change. To persist, arthropods in the LEF must contend with the considerable variation in abiotic conditions associated with repeated, large-scale, and increasingly frequent pulse disturbances. Consequently, they are likely to be well-adapted to the effects of climate change, at least over the short term. Total abundance of canopy arthropods after Hurricane Maria has risen to levels comparable to the peak after Hurricane Hugo. Although the abundances of some taxa have declined over the 29-y period, others have increased, reflecting species turnover in response to disturbance and secondary succession.

     
    more » « less
  2. Across the globe, the forest carbon sink is increasingly vulnerable to an expanding array of low- to moderate-severity disturbances. However, some forest ecosystems exhibit functional resistance (i.e., the capacity of ecosystems to continue functioning as usual) following disturbances such as extreme weather events and insect or fungal pathogen outbreaks. Unlike severe disturbances (e.g., stand-replacing wildfires), moderate severity disturbances do not always result in near-term declines in forest production because of the potential for compensatory growth, including enhanced subcanopy production. Community-wide shifts in subcanopy plant functional traits, prompted by disturbance-driven environmental change, may play a key mechanistic role in resisting declines in net primary production (NPP) up to thresholds of canopy loss. However, the temporal dynamics of these shifts, as well as the upper limits of disturbance for which subcanopy production can compensate, remain poorly characterized. In this study, we leverage a 4-year dataset from an experimental forest disturbance in northern Michigan to assess subcanopy community trait shifts as well as their utility in predicting ecosystem NPP resistance across a wide range of implemented disturbance severities. Through mechanical girdling of stems, we achieved a gradient of severity from 0% (i.e., control) to 45, 65, and 85% targeted gross canopy defoliation, replicated across four landscape ecosystems broadly representative of the Upper Great Lakes ecoregion. We found that three of four examined subcanopy community weighted mean (CWM) traits including leaf photosynthetic rate ( p = 0.04), stomatal conductance ( p = 0.07), and the red edge normalized difference vegetation index ( p < 0.0001) shifted rapidly following disturbance but before widespread changes in subcanopy light environment triggered by canopy tree mortality. Surprisingly, stimulated subcanopy production fully compensated for upper canopy losses across our gradient of experimental severities, achieving complete resistance (i.e., no significant interannual differences from control) of whole ecosystem NPP even in the 85% disturbance treatment. Additionally, we identified a probable mechanistic switch from nutrient-driven to light-driven trait shifts as disturbance progressed. Our findings suggest that remotely sensed traits such as the red edge normalized difference vegetation index (reNDVI) could be particularly sensitive and robust predictors of production response to disturbance, even across compositionally diverse forests. The potential of leaf spectral indices to predict post-disturbance functional resistance is promising given the capabilities of airborne to satellite remote sensing. We conclude that dynamic functional trait shifts following disturbance can be used to predict production response across a wide range of disturbance severities. 
    more » « less
  3. Abstract

    Forest insect outbreaks cause large changes in ecosystem structure, composition, and function. Humans often respond to insect outbreaks by conducting salvage logging, which can amplify the immediate effects, but it is unclear whether logging will result in lasting differences in forest structure and dynamics when compared with forests affected only by insect outbreaks. We used 15 years of data from an experimental removal ofTsuga canadensis(L.) Carr. (Eastern hemlock), a foundation tree species within eastern North American forests, and contrasted the rate, magnitude, and persistence of response trajectories between girdling (emulating mortality from insect outbreak) and timber harvest treatments. Girdling and logging were equally likely to lead to large changes in forest structure and dynamics, but logging resulted in faster rates of change. Understory light increases and community composition changes were larger and more rapid in the logged plots. Tree seedling and understory vegetation abundance increased more in the girdled plots; this likely occurred because seedlings grew rapidly into the sapling‐ and tree‐size classes after logging and quickly shaded out plants on the forest floor. Downed deadwood pools increased more after logging but standing deadwood pools increased dramatically after girdling. Understory light levels remained elevated for a longer time after girdling. Perhaps because the window of opportunity for understory species to establish was longer in the girdled plots, total species richness increased more in the girdled than logged plots. Despite the potential for greater diversity in the girdled plots,Betula lentaL. (black birch) was the most abundant tree species recruited into the sapling‐ and tree‐size classes in both the girdled and logged plots and is poised to dominate the new forest canopy. The largest difference between the girdling and logging treatments—deadwood structure and quantity—will persist and continue to bolster aboveground carbon storage and structural and habitat diversity in the girdled plots. Human responses to insect outbreaks hasten forest reorganization and remove structural resources that may further alter forest response to ongoing climate stress and future disturbances.

     
    more » « less
  4. Hassapakis, Craig ; Grieneisen, M. (Ed.)
    On September 2017, Hurricane Maria swept over Puerto Rico as a Category 4 storm. Severe canopy loss, augmentation of forest floor debris, and a significant increase in temperature and light reaching the understory were among the most evident changes at El Yunque National Forest, where a population of Eleutherodactylus coqui frogs has been monitored over the past 30 years. When sampling was re-established, the frogs could be heard calling, but it was very difficult to find them among the complexity of vegetation in the forest floor. We inferred that canopy disturbance had left frogs without optimal arboreal habitats for retreat, nocturnal perching, feeding, and reproductive activities, and wondered whether they would use artificial habitats placed in the forest understory. To test this, two types of artificial habitats (i.e., “coqui houses”) were introduced in the forest understory, consisting of either open PVC pipes or single-entrance natural bamboo shoots. Surveys were conducted twice a month for 15 months in an experimental transect with coqui houses, and a control transect without them. Data were collected on the occupancy rate of the artificial sites, type of usage, time of day occupied, and the number of E. coqui observed. The effects of time since the hurricane, microhabitat temperature, type of coqui house, and seasonality on the occupancy rate were also evaluated. Results showed that coquis used bamboo houses mostly during daytime as retreat and nesting sites, whereas the PVC houses were used mostly at night as calling sites. Daytime occupancy of coqui houses showed a significant bell-shaped pattern over time since the hurricane. This may be explained by a steady increase in usage after severe forest damage, a peak during the stressful cool-dry season, and a decline afterwards as the forest began to recover. No differences were found in frog counts between experimental and control transects, probably because the coquis could also hide among the fallen vegetation, but either disparities in forest conditions or inappropriateness of the methods for estimating population numbers may have overshadowed this effect. Coquis used artificial houses more often during the most stressful environmental conditions, suggesting that these shelters may serve to enhance habitat quality for amphibians after extreme weather events. 
    more » « less
  5. Abstract

    Tropical forest understory regeneration occurs rapidly after disturbance with compositional trajectories that depend on species availability and environmental conditions. To predict future tropical forest regeneration dynamics, we need a deeper understanding of how pulse disturbance events, like hurricanes, interact with environmental variability to affect understory demography and composition. We examined fern and sapling mortality, recruitment, and community composition in relation to solar radiation and soil moisture using 17 years of forest dynamics data (2003–2019) from the Canopy Trimming Experiment in the Luquillo Experimental Forest, Puerto Rico. Solar radiation increased 150% and soil moisture increased 40% following canopy trimming of experimental plots relative to control plots. All plots were disturbed in 2017 by Hurricanes Irma and Maria, so experimentally trimmed plots presented the opportunity to study the effects of multiple hurricanes, while control plots isolated the effects of a single natural hurricane. Recruitment rates maximized at 0.14 individuals/plot/month for ferns and 0.20 stems/plot/month for saplings. Recruitment and mortality were distributed more evenly over the 17 years of monitoring in experimentally trimmed plots than in control plots; however, following Hurricane Maria demographic rates substantially increased in control plots only. In experimentally trimmed plots, the largest community compositional shifts occurred as a result of the trimming events, and compositional changes were greatest for control plots after Hurricane Maria in 2017. Pioneer tree and fern species increased in abundance in response to both simulated and natural hurricanes. Following Hurricane Maria, two dominant pioneer species,Cyathea arboreaandCecropia schreberiana, recruited abundantly, but only in control plots. In trimmed plots, increased solar radiation and soil moisture shifted understory species composition steadily toward pioneer and secondary‐successional species, with soil moisture interacting strongly with canopy trimming. Thus, both solar radiation and soil moisture are environmental drivers affecting pioneer species recruitment following disturbance, which interact with canopy opening following hurricanes. Our results suggest that if hurricane disturbances increase in frequency and severity, as suggested by climate change predictions, the understory regeneration of late‐successional species, such asManilkara bidentataandSloanea berteroana, which prefer deeper shade and slightly drier soil microsites, may become imperiled.

     
    more » « less