skip to main content

Title: Disturbance structures canopy and understory productivity along an environmental gradient
Disturbances often disproportionately impact different vegetation layers in forests and other vertically stratified ecosystems, shaping community structure and ecosystem function. However, disturbance-driven changes may be mediated by environmental conditions that affect habitat quality and species interactions. In a decade-long field experiment, we tested how kelp forest net primary productivity (NPP) responds to repeated canopy loss along a gradient in grazing and substrate suitability. We discovered that habitat quality can mediate the effects of intensified disturbance on canopy and understory NPP. Experimental annual and quarterly disturbances suppressed total macroalgal NPP, but effects were strongest in high- quality habitats that supported dense kelp canopies that were removed by disturbance. Understory macroalgae partly compensated for canopy NPP losses and this effect magnified with increasing habitat quality. Disturbance-driven increases in understory NPP were still rising after 5-10 years of disturbance, demonstrating the value of long-term experimentation for understanding ecosystem responses to changing disturbance regimes.
Authors:
; ; ;
Award ID(s):
2023555 1831937
Publication Date:
NSF-PAR ID:
10279871
Journal Name:
Ecology letters
ISSN:
1461-023X
Sponsoring Org:
National Science Foundation
More Like this
  1. A number of recent studies have documented long-term declines in abundances of important arthropod groups, primarily in Europe and North America. These declines are generally attributed to habitat loss, but a recent study [B.C. Lister, A. Garcia,Proc. Natl. Acad. Sci. USA115, E10397–E10406 (2018)] from the Luquillo Experimental Forest (LEF) in Puerto Rico attributed declines to global warming. We analyze arthropod data from the LEF to evaluate long-term trends within the context of hurricane-induced disturbance, secondary succession, and temporal variation in temperature. Our analyses demonstrate that responses to hurricane-induced disturbance and ensuing succession were the primary factors that affected total canopy arthropod abundances on host trees, as well as walkingstick abundance on understory shrubs. Ambient and understory temperatures played secondary roles for particular arthropod species, but populations were just as likely to increase as they were to decrease in abundance with increasing temperature. The LEF is a hurricane-mediated system, with major hurricanes effecting changes in temperature that are larger than those induced thus far by global climate change. To persist, arthropods in the LEF must contend with the considerable variation in abiotic conditions associated with repeated, large-scale, and increasingly frequent pulse disturbances. Consequently, they are likely to be well-adapted to themore »effects of climate change, at least over the short term. Total abundance of canopy arthropods after Hurricane Maria has risen to levels comparable to the peak after Hurricane Hugo. Although the abundances of some taxa have declined over the 29-y period, others have increased, reflecting species turnover in response to disturbance and secondary succession.

    « less
  2. Hassapakis, Craig ; Grieneisen, M. (Ed.)
    On September 2017, Hurricane Maria swept over Puerto Rico as a Category 4 storm. Severe canopy loss, augmentation of forest floor debris, and a significant increase in temperature and light reaching the understory were among the most evident changes at El Yunque National Forest, where a population of Eleutherodactylus coqui frogs has been monitored over the past 30 years. When sampling was re-established, the frogs could be heard calling, but it was very difficult to find them among the complexity of vegetation in the forest floor. We inferred that canopy disturbance had left frogs without optimal arboreal habitats for retreat, nocturnal perching, feeding, and reproductive activities, and wondered whether they would use artificial habitats placed in the forest understory. To test this, two types of artificial habitats (i.e., “coqui houses”) were introduced in the forest understory, consisting of either open PVC pipes or single-entrance natural bamboo shoots. Surveys were conducted twice a month for 15 months in an experimental transect with coqui houses, and a control transect without them. Data were collected on the occupancy rate of the artificial sites, type of usage, time of day occupied, and the number of E. coqui observed. The effects of time since themore »hurricane, microhabitat temperature, type of coqui house, and seasonality on the occupancy rate were also evaluated. Results showed that coquis used bamboo houses mostly during daytime as retreat and nesting sites, whereas the PVC houses were used mostly at night as calling sites. Daytime occupancy of coqui houses showed a significant bell-shaped pattern over time since the hurricane. This may be explained by a steady increase in usage after severe forest damage, a peak during the stressful cool-dry season, and a decline afterwards as the forest began to recover. No differences were found in frog counts between experimental and control transects, probably because the coquis could also hide among the fallen vegetation, but either disparities in forest conditions or inappropriateness of the methods for estimating population numbers may have overshadowed this effect. Coquis used artificial houses more often during the most stressful environmental conditions, suggesting that these shelters may serve to enhance habitat quality for amphibians after extreme weather events.« less
  3. Small-scale treefall gaps are among the most important forms of forest disturbance in tropical forests. These gaps expose surrounding trees to more light, promoting rapid growth of understory plants. However, the effects of such small-scale disturbances on the distribution of plant water use across tree canopy levels are less known. To address this, we explored plant transpiration response to the death of a large emergent tree, Mortoniodendron anisophyllum Standl. & Steyerm (DBH > 220 cm; height ~40 m). Three suppressed, four mid-story, and two subdominant trees were selected within a 50 × 44 m premontane tropical forest plot at the Texas A&M Soltis Center for Research and Education located in Costa Rica. We compared water use rates of the selected trees before (2015) and after (2019) the tree gap using thermal dissipation sap flow sensors. Hemispherical photography indicated a 40% increase in gap fraction as a result of changes in canopy structure after the treefall gap. Micrometeorological differences (e.g., air temperature, relative humidity, and vapor pressure deficit (VPD)) could not explain the observed trends. Rather, light penetration, as measured by sensors within the canopy, increased significantly in 2019. One year after the tree fell, the water usage of trees acrossmore »all canopy levels increased modestly (15%). Moreover, average water usage by understory trees increased by 36%, possibly as a result of the treefall gap, exceeding even that of overstory trees. These observations suggest the possible reallocation of water use between overstory and understory trees in response to the emergent tree death. With increasing global temperatures and shifting rainfall patterns increasing the likelihood of tree mortality in tropical forests, there is a greater need to enhance our understanding of treefall disturbances that have the potential to redistribute resources within forests.« less
  4. The hemlock woolly adelgid (HWA; Adelges tsugae) is an invasive insect infestation that is spreading into the forests of the northeastern United States, driven by the warmer winter temperatures associated with climate change. The initial stages of this disturbance are difficult to detect with passive optical remote sensing, since the insect often causes its host species, eastern hemlock trees (Tsuga canadensis), to defoliate in the midstory and understory before showing impacts in the overstory. New active remote sensing technologies—such as the recently launched NASA Global Ecosystem Dynamics Investigation (GEDI) spaceborne lidar—can address this limitation by penetrating canopy gaps and recording lower canopy structural changes. This study explores new opportunities for monitoring the HWA infestation with airborne lidar scanning (ALS) and GEDI spaceborne lidar data. GEDI waveforms were simulated using airborne lidar datasets from an HWA-infested forest plot at the Harvard Forest ForestGEO site in central Massachusetts. Two airborne lidar instruments, the NASA G-LiHT and the NEON AOP, overflew the site in 2012 and 2016. GEDI waveforms were simulated from each airborne lidar dataset, and the change in waveform metrics from 2012 to 2016 was compared to field-derived hemlock mortality at the ForestGEO site. Hemlock plots were shown to be undergoingmore »dynamic changes as a result of the HWA infestation, losing substantial plant area in the middle canopy, while still growing in the upper canopy. Changes in midstory plant area (PAI 11–12 m above ground) and overall canopy permeability (indicated by RH10) accounted for 60% of the variation in hemlock mortality in a logistic regression model. The robustness of these structure-condition relationships held even when simulated waveforms were treated as real GEDI data with added noise and sparse spatial coverage. These results show promise for future disturbance monitoring studies with ALS and GEDI lidar data.« less
  5. Globally, biodiversity has declined at an unprecedented rate, challenging the viability of ecosystems, species, and ecological functions and their corresponding services. Payments for ecosystem services (PES) programs have been established and implemented worldwide to combat the degradation or loss of essential ecosystems and ecosystem services with-out sacrificing the well-being of people. With an overarching goal of reducing soil ero-sion, China’s Grain-to-Green program (GTGP) converts cropland to forest or grassland. As one of the largest PES programs in the world, GTGP has great potential to offer biodi-versity conservation co-benefits. To consider how GTGP may influence biodiversity, we measured forest structure and plant and wildlife species diversity at both GTGP forest and natural forest sites in Fangjingshan National Nature Reserve, China. We also evaluated the relationship between canopy cover and biodiversity measures to test whether forest cover, the most commonly measured and reported ecological metric of PES programs, might act as a good proxy for other biodiversity related parameters. We found that forest cover and species diversity increased after GTGP implementation as understory and overstory plant cover, and understory and midstory plant diversity at GTGP sites were similar to natural forest. Our results suggest that GTGP may also have been associated withmore »increased habitat for protected and vulnerable wildlife species including Elliot’s pheasant (Syrmaticus elli-oti), hog badger (Arctonyx collaris), and wild boar (Sus scrofa). Nevertheless, we identi-fied key differences between GTGP forest and natural forest, particularly variation in forest types and heterogeneity of overstory vegetation. As a result, plant overstory diversity and wildlife species richness at GTGP forest were significantly lower than at natural forest. Our findings suggest, while forest cover may be a good proxy for some metrics of forest struc-ture, it does not serve as a robust proxy for many biodiversity parameters. These findings highlight the need for and importance of robust and representative indicators or proxy vari-ables for measuring ecological effects of PES programs on compositional and structural diversity. We demonstrate that PES may lead to biodiversity co-benefits, but changes in program implementation could improve the return on investment of PES programs to sup-port conservation of biodiversity.« less