The ocean is estimated to contribute up to ~20% of global fluxes of atmospheric nitrous oxide (N2O), an important greenhouse gas and ozone depletion agent. Marine oxygen minimum zones contribute disproportionately to this flux. To further understand the partition of nitrification and denitrification and their environmental controls on marine N2O fluxes, we report new relationships between oxygen concentration and rates of N2O production from nitrification and denitrification directly measured with15N tracers in the Eastern Tropical Pacific. Highest N2O production rates occurred near the oxic‐anoxic interface, where there is strong potential for N2O efflux to the atmosphere. The dominant N2O source in oxygen minimum zones was nitrate reduction, the rates of which were 1 to 2 orders of magnitude higher than those of ammonium oxidation. The presence of oxygen significantly inhibited the production of N2O from both nitrification and denitrification. These experimental data provide new constraints to a multicomponent global ocean biogeochemical model, which yielded annual oceanic N2O efflux of 1.7–4.4 Tg‐N (median 2.8 Tg‐N, 1 Tg = 1012 g), with denitrification contributing 20% to the oceanic flux. Thus, denitrification should be viewed as a net N2O production pathway in the marine environment.
- NSF-PAR ID:
- 10280249
- Date Published:
- Journal Name:
- Frontiers in Marine Science
- Volume:
- 8
- ISSN:
- 2296-7745
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
null (Ed.)Abstract The ocean is a net source of N 2 O, a potent greenhouse gas and ozone-depleting agent. However, the removal of N 2 O via microbial N 2 O consumption is poorly constrained and rate measurements have been restricted to anoxic waters. Here we expand N 2 O consumption measurements from anoxic zones to the sharp oxygen gradient above them, and experimentally determine kinetic parameters in both oxic and anoxic seawater for the first time. We find that the substrate affinity, O 2 tolerance, and community composition of N 2 O-consuming microbes in oxic waters differ from those in the underlying anoxic layers. Kinetic parameters determined here are used to model in situ N 2 O production and consumption rates. Estimated in situ rates differ from measured rates, confirming the necessity to consider kinetics when predicting N 2 O cycling. Microbes from the oxic layer consume N 2 O under anoxic conditions at a much faster rate than microbes from anoxic zones. These experimental results are in keeping with model results which indicate that N 2 O consumption likely takes place above the oxygen deficient zone (ODZ). Thus, the dynamic layer with steep O 2 and N 2 O gradients right above the ODZ is a previously ignored potential gatekeeper of N 2 O and should be accounted for in the marine N 2 O budget.more » « less
-
Abstract Dinitrogen (N2) fixation is an important source of biologically reactive nitrogen (N) to the global ocean. The magnitude of this flux, however, remains uncertain, in part because N2fixation rates have been estimated following divergent protocols and because associated levels of uncertainty are seldom reported—confounding comparison and extrapolation of rate measurements. A growing number of reports of relatively low but potentially significant rates of N2fixation in regions such as oxygen minimum zones, the mesopelagic water column of the tropical and subtropical oceans, and polar waters further highlights the need for standardized methodological protocols for measurements of N2fixation rates and for calculations of detection limits and propagated error terms. To this end, we examine current protocols of the15N2tracer method used for estimating diazotrophic rates, present results of experiments testing the validity of specific practices, and describe established metrics for reporting detection limits. We put forth a set of recommendations for best practices to estimate N2fixation rates using15N2tracer, with the goal of fostering transparency in reporting sources of uncertainty in estimates, and to render N2fixation rate estimates intercomparable among studies.
-
Abstract Nitrous oxide (N2O), a potent greenhouse gas, is produced disproportionately in marine oxygen deficient zones (ODZs). To quantify spatiotemporal variation in N2O cycling in an ODZ, we analyzed N2O concentration and isotopologues along a transect through the eastern tropical North Pacific (ETNP). At several stations along this transect, N2O concentrations reached a near surface maximum that exceeded prior measurements in this region, of up to 226.1 ± 20.5 nM at the coast. Above the
σ θ = 25.0 kg/m3isopycnal, Keeling plot analysis revealed two sources to the near‐surface N2O maximum, with different δ15N2Oαand δ15N2Oβvalues, but each with a site preference (SP) of 6‰–8‰. Given expected SPs for nitrification and denitrification, each of these sources could be comprised of 17%–26% nitrification (bacterial or archeal), and 74%–83% denitrification (or nitrifier‐denitrification). Below theσ θ = 25.0 kg/m3isopycnal, box model analysis indicated that the observed 46‰–50‰ SPs in the anoxic core of the ODZ cannot be reproduced in a steady state context without an SP for N2O production by denitrification, and may indicate instead a transient net consumption of N2O. Furthermore, time‐dependent model results indicated that while δ15N2Oαand δ18O‐N2O reflect both N2O production and consumption in the anoxic core of the ODZ, δ15N2Oβpredominantly reflects N2O sources. Finally, we infer that the high (N2O) observed at some stations derive from a set of conditions supporting high rates of N2O production that have not been previously encountered in this region. -
Abstract Marine oxygen deficient zones are dynamic areas of microbial nitrogen cycling. Nitrification, the microbial oxidation of ammonia to nitrate, plays multiple roles in the biogeochemistry of these regions, including production of the greenhouse gas nitrous oxide (N2O). We present here the results of two oceanographic cruises investigating nitrification, nitrifying microorganisms, and N2O production and distribution from the offshore waters of the Eastern Tropical South Pacific. On each cruise, high‐resolution measurements of ammonium ([NH4+]), nitrite ([NO2−]), and N2O were combined with15N tracer‐based determination of ammonia oxidation, nitrite oxidation, nitrate reduction, and N2O production rates. Depth‐integrated inventories of NH4+and NO2−were positively correlated with one another and with depth‐integrated primary production. Depth‐integrated ammonia oxidation rates were correlated with sinking particulate organic nitrogen flux but not with primary production; ammonia oxidation rates were undetectable in trap‐collected sinking particulate material. Nitrite oxidation rates exceeded ammonia oxidation rates at most mesopelagic depths. We found positive correlations between archaeal
amoA genes and ammonia oxidation rates and betweenNitrospina ‐like 16S rRNA genes and nitrite oxidation rates. N2O concentrations in the upper oxycline reached values of >140 nM, even at the western extent of the cruise track, supporting air‐sea fluxes of up to 1.71 μmol m−2 day−1. Our results suggest that a source of NO2−other than ammonia oxidation may fuel high rates of nitrite oxidation in the offshore Eastern Tropical South Pacific and that air‐sea fluxes of N2O from this region may be higher than previously estimated.