skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Exploring the design space of 3-mirror freeform imagers
Variations on a large aperture three-mirror freeform imager are explored. The tradeoff of optical performance with design parameters such as F-number and FOV aspect ratio is quantified. Reimaging and wide-FOV systems are also studied.  more » « less
Award ID(s):
1822049 1822026
PAR ID:
10281483
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Frontiers in Optics / Laser Science
Page Range / eLocation ID:
FM1A.5
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cybersickness, or sickness induced by virtual reality (VR), negatively impacts the enjoyment and adoption of the technology. One method that has been used to reduce sickness is repeated exposure to VR, herein Cybersickness Abatement from Repeated Exposure (CARE). However, high sickness levels during repeated exposure may discourage some users from returning. Field of view (FOV) restriction reduces cybersickness by minimizing visual motion in the periphery, but also negatively affects the user's visual experience. This study explored whether CARE that occurs with FOV restriction generalizes to a full FOV experience. Participants played a VR game for up to 20 minutes. Those in the Repeated Exposure Condition played the same VR game on four separate days, experiencing FOV restriction during the first three days and no FOV restriction on the fourth day. Results indicated significant CARE with FOV restriction (Days 1-3). Further, cybersickness on Day 4, without FOV restriction, was significantly lower than that of participants in the Single Exposure Condition, who experienced the game without FOV restriction only on one day. The current findings show that significant CARE can occur while experiencing minimal cybersickness. Results are considered in the context of multiple theoretical explanations for CARE, including sensory rearrangement, adaptation, habituation, and postural control. 
    more » « less
  2. Virtual reality sickness typically results from visual-vestibular conflict. Because self-motion from optical flow is driven most strongly by motion at the periphery of the retina, reducing the user’s field-of-view (FOV) during locomotion has proven to be an effective strategy to minimize visual vestibular conflict and VR sickness. Current FOV restrictor implementations reduce the user’s FOV by rendering a restrictor whose center is fixed at the center of the head mounted display (HMD), which is effective when the user’s eye gaze is aligned with head gaze. However, during eccentric eye gaze, users may look at the FOV restrictor itself, exposing them to peripheral optical flow which could lead to increased VR sickness. To address these limitations, we develop a foveated FOV restrictor and we explore the effect of dynamically moving the center of the FOV restrictor according to the user’s eye gaze position. We conducted a user study (n=22) where each participant uses a foveated FOV restrictor and a head-fixed FOV restrictor while navigating a virtual environment. We found no statistically significant difference in VR sickness measures or noticeability between both restrictors. However, there was a significant difference in eye gaze behavior, as measured by eye gaze dispersion, with the foveated FOV restrictor allowing participants to have a wider visual scan area compared to the head-fixed FOV restrictor, which confined their eye gaze to the center of the FOV. 
    more » « less
  3. Near-eye display systems for augmented reality (AR) aim to seamlessly merge virtual content with the user’s view of the real-world. A substantial limitation of current systems is that they only present virtual content over a limited portion of the user’s natural field of view (FOV). This limitation reduces the immersion and utility of these systems. Thus, it is essential to quantify FOV coverage in AR systems and understand how to maximize it. It is straightforward to determine the FOV coverage for monocular AR systems based on the system architecture. However, stereoscopic AR systems that present 3D virtual content create a more complicated scenario because the two eyes’ views do not always completely overlap. The introduction of partial binocular overlap in stereoscopic systems can potentially expand the perceived horizontal FOV coverage, but it can also introduce perceptual nonuniformity artifacts. In this arrticle, we first review the principles of binocular FOV overlap for natural vision and for stereoscopic display systems. We report the results of a set of perceptual studies that examine how different amounts and types of horizontal binocular overlap in stereoscopic AR systems influence the perception of nonuniformity across the FOV. We then describe how to quantify the horizontal FOV in stereoscopic AR when taking 3D content into account. We show that all stereoscopic AR systems result in a variable horizontal FOV coverage and variable amounts of binocular overlap depending on fixation distance. Taken together, these results provide a framework for optimizing perceived FOV coverage and minimizing perceptual artifacts in stereoscopic AR systems for different use cases. 
    more » « less
  4. Streaming of live 360-degree video allows users to follow a live event from any view point and has already been deployed on some commercial platforms. However, the current systems can only stream the video at relatively low-quality because the entire 360-degree video is delivered to the users under limited bandwidth. In this paper, we propose to use the idea of "flocking" to improve the performance of both prediction of field of view (FoV) and caching on the edge servers for live 360-degree video streaming. By assigning variable playback latencies to all the users in a streaming session, a "streaming flock" is formed and led by low latency users in the front of the flock. We propose a collaborative FoV prediction scheme where the actual FoV information of users in the front of the flock are utilized to predict of users behind them. We further propose a network condition aware flocking strategy to reduce the video freeze and increase the chance for collaborative FoV prediction on all users. Flocking also facilitates caching as video tiles downloaded by the front users can be cached by an edge server to serve the users at the back of the flock, thereby reducing the traffic in the core network. We propose a latency-FoV based caching strategy and investigate the potential gain of applying transcoding on the edge server. We conduct experiments using real-world user FoV traces and WiGig network bandwidth traces to evaluate the gains of the proposed strategies over benchmarks. Our experimental results demonstrate that the proposed streaming system can roughly double the effective video rate, which is the video rate inside a user's actual FoV, compared to the prediction only based on the user's own past FoV trajectory, while reducing video freeze. Furthermore, edge caching can reduce the traffic in the core network by about 80%, which can be increased to 90% with transcoding on edge server. 
    more » « less
  5. Multiple tools are available to reduce cybersickness (sickness caused by virtual reality), but past research has not investigated the combined effects of multiple mitigation tools. Field of view (FOV) restriction limits peripheral vision during self-motion, and ample evidence supports its effectiveness for reducing cybersickness. Snap turning involves discrete rotations of the user's perspective without presenting intermediate views, although reports on its effectiveness at reducing cybersickness are limited and equivocal. Both mitigation tools reduce the visual motion that can cause cybersickness. The current study (N = 201) investigated the individual and combined effects of FOV restriction and snap turning on cybersickness when playing a consumer virtual reality game. FOV restriction and snap turning in isolation reduced cybersickness compared to a control condition without mitigation tools. Yet, the combination of FOV restriction and snap turning did not further reduce cybersickness beyond the individual tools in isolation, and in some cases the combination of tools led to cybersickness similar to that in the no mitigation control. These results indicate that caution is warranted when combining multiple cybersickness mitigation tools, which can interact in unexpected ways. 
    more » « less