Abstract With specific fold patterns, a 2D flat origami can be converted into a complex 3D structure under an external driving force. Origami inspires the engineering design of many self-assembled and re-configurable devices. This work aims to apply the level set-based topology optimization to the generative design of origami structures. The origami mechanism is simulated using thin shell models where the deformation on the surface and the deformation in the normal direction can be simplified and well captured. Moreover, the fold pattern is implicitly represented by the boundaries of the level set function. The folding topology is optimized by minimizing a new multiobjective function that balances kinematic performance with structural stiffness and geometric requirements. Besides regular straight folds, our proposed model can mimic crease patterns with curved folds. With the folding curves implicitly represented, the curvature flow is utilized to control the complexity of the folds generated. The performance of the proposed method is demonstrated by the computer generation and physical validation of two thin shell origami designs. 
                        more » 
                        « less   
                    
                            
                            In situ stiffness manipulation using elegant curved origami
                        
                    
    
            The capability of stiffness manipulation for materials and structures is essential for tuning motion, saving energy, and delivering high power. However, high-efficiency in situ stiffness manipulation has not yet been successfully achieved despite many studies from different perspectives. Here, curved origami patterns were designed to accomplish in situ stiffness manipulation covering positive, zero, and negative stiffness by activating predefined creases on one curved origami pattern. This elegant design enables in situ stiffness switching in lightweight and space-saving applications, as demonstrated through three robotic-related components. Under a uniform load, the curved origami can provide universal gripping, controlled force transmissibility, and multistage stiffness response. This work illustrates an unexplored and unprecedented capability of curved origami, which opens new applications in robotics for this particular family of origami patterns. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1762792
- PAR ID:
- 10281961
- Date Published:
- Journal Name:
- Science Advances
- Volume:
- 6
- Issue:
- 47
- ISSN:
- 2375-2548
- Page Range / eLocation ID:
- eabe2000
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Spherically focused transducers have been long relied on to target acoustic energy delivery. Yet, these structures have limitations with respect to size and mobility for medical treatment applications. Recent developments in the field of reconfigurable structures reveal that the ancient art of origami inspires new platforms by which to enable spherical shapes that are additionally foldable for ease of transport. This research explores the opportunities for a unique, flat foldable doubly curved tessellated array to enable wave focusing capability similar to an ideal medical transducer shape: the spherical cap transducer. An analytical model of the doubly curved array is created and validated against data collected from a proof-of-concept array. The model is then leveraged to understand how the array design and complexity relatively govern the wave focusing capability. The findings show that doubly curved acoustic arrays do not require excessive facet refinement to achieve wave focusing similar to nominal spherically focused transducers. Yet, the optimal frequencies for which such capability is borne out vary substantially on the basis of array design. The discoveries of this research motivate future consideration of flat foldable doubly curved acoustic arrays for potential implementation into medical transducer development for hard-to-access surgical treatments.more » « less
- 
            null (Ed.)Abstract Curved surfaces are often used to radiate and focus acoustic waves. Yet, when tessellated into reconfigurable surfaces for sake of deployability needs, origami-inspired acoustic arrays may be challenging to hold into curved shape and may not retain flat foldability. On the other hand, deployable mechanisms such as the Hoberman ring are as low-dimensional as many origami tessellations and may maintain curved shape with ease due to ideal rigid bar compositions. This research explores an interface between a Hoberman ring and Miura-ori tessellation that maintain kinematic and geometric compatibility for sake of maintaining curved shapes for sound focusing. The Miura-ori facets are considered to vibrate like baffled pistons and generate acoustic waves that radiate from the ring structure. An analytical model is built to reveal the near field acoustic behavior of acoustic arrays resulting from a Hoberman–Miura system synthesis. Acoustic wave focusing capability is scrutinized and validated through proof-of-principle experiments. Studies reveal wave focusing phenomena distinct to this manifestation of the acoustic array and uncover design and operational influences on wave focusing effectiveness. The results encourage exploration of new interfaces between reconfigurable mechanisms and origami devices where low-dimensional shape change is desired.more » « less
- 
            Origami foldcores, especially the blockfold cores, have emerged as promising components of high-performance sandwich composites. Inspired by the blockfold origami, we propose the axisymmetric blockfold origami (ABO), which is composed of both rectangular and trapezoidal panels. The ABO inherits the non-flat-foldability of the blockfold origami, and furthermore, displays self-locking mechanisms and enhanced stiffness. The geometry and folding kinematics of the ABO are formulated with respect to the geometric parameters and the folding angle of the assembly. The mathematical conditions are derived for the existence of self-locking mechanisms. We perform compression test simulations to demonstrate enhanced stiffness and increased load-bearing capacity. We find that the existence of rectangular panels not only dominates the non-flat-foldability of the ABO, but also contributes to the enhancement of the stiffness. Our results suggest the potential applications of the ABO for building load-bearing structures with rotational symmetry. Moreover, we discuss the prospects of designing tightly assembled multi-layered origami structures with prestress induced by the mismatch of successive layers to enlighten future research.more » « less
- 
            The folding motion of an origami structure can be stopped at a non-flat position when two of its facets bind together. Such facet-binding will induce self-locking so that the overall origami structure can stay at a pre-specified configuration without the help of additional locking devices or actuators. This research investigates the designs of self-locking origami structures and the locking-induced kinematical and mechanical properties. We show that incorporating multiple cells of the same type but with different geometry could significantly enrich the self-locking origami pattern design. Meanwhile, it offers remarkable programmability to the kinematical properties of the selflocking origami structures, including the number and position of locking points, and the deformation range. Self-locking will also affect the mechanical characteristics of the origami structures. Experiments and finite element simulations reveal that the structural stiffness will experience a sudden jump with the occurrence of self-locking, inducing a piecewise stiffness profile. The results of this research would provide design guidelines for developing self-locking origami structures and metamaterials with excellent kinematical and stiffness characteristics, with many potential engineering applications.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    