- Award ID(s):
- 2006433
- NSF-PAR ID:
- 10282644
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 494
- Issue:
- 1
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- 1 to 9
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract We present the ALMA detection of molecular outflowing gas in the central regions of NGC 4945, one of the nearest starbursts and also one of the nearest hosts of an active galactic nucleus (AGN). We detect four outflow plumes in CO J = 3 − 2 at ∼0.″3 resolution that appear to correspond to molecular gas located near the edges of the known ionized outflow cone and its (unobserved) counterpart behind the disk. The fastest and brightest of these plumes has emission reaching observed line-of-sight projected velocities of over 450 km s −1 beyond systemic, equivalent to an estimated physical outflow velocity v ≳ 600 km s −1 for the fastest emission. Most of these plumes have corresponding emission in HCN or HCO + J = 4 − 3. We discuss a kinematic model for the outflow emission where the molecular gas has the geometry of the ionized gas cone and shares the rotation velocity of the galaxy when ejected. We use this model to explain the velocities we observe, constrain the physical speed of the ejected material, and account for the fraction of outflowing gas that is not detected due to confusion with the galaxy disk. We estimate a total molecular mass outflow rate M ̇ mol ∼ 20 M ⊙ yr −1 flowing through a surface within 100 pc of the disk midplane, likely driven by a combination of the central starburst and AGN.more » « less
-
Abstract We study the ionization and excitation structure of the interstellar medium in the late-stage gas-rich galaxy merger NGC 6240 using a suite of emission-line maps at ∼25 pc resolution from the Hubble Space Telescope, Keck/NIRC2 with Adaptive Optics, and the Atacama Large Millimeter/submillimeter Array (ALMA). NGC 6240 hosts a superwind driven by intense star formation and/or one or both of two active nuclei; the outflows produce bubbles and filaments seen in shock tracers from warm molecular gas (H22.12
μ m) to optical ionized gas ([Oiii ], [Nii ], [Sii ], and [Oi ]) and hot plasma (FeXXV ). In the most distinct bubble, we see a clear shock front traced by high [Oiii ]/Hβ and [Oiii ]/[Oi ]. Cool molecular gas (CO(2−1)) is only present near the base of the bubble, toward the nuclei launching the outflow. We interpret the lack of molecular gas outside the bubble to mean that the shock front is not responsible for dissociating molecular gas, and conclude that the molecular clouds are partly shielded and either entrained briefly in the outflow, or left undisturbed while the hot wind flows around them. Elsewhere in the galaxy, shock-excited H2extends at least ∼4 kpc from the nuclei, tracing molecular gas even warmer than that between the nuclei, where the two galaxies’ interstellar media are colliding. A ridgeline of high [Oiii ]/Hβ emission along the eastern arm aligns with the southern nucleus’ stellar disk minor axis; optical integral field spectroscopy from WiFeS suggests this highly ionized gas is centered at systemic velocity and likely photoionized by direct line of sight to the southern active galactic nucleus. -
ABSTRACT We present Chandra X-ray Observatory observations and Space Telescope Imaging Spectrograph spectra of NGC 5972, one of the 19 ‘Voorwerpjes’ galaxies. This galaxy contains an extended emission-line region (EELR) and an arcsecond scale nuclear bubble. NGC 5972 is a faded active galactic nucleus (AGN), with EELR luminosity suggesting a 2.1 dex decrease in Lbol in the last ∼5 × 104 yr. We investigate the role of AGN feedback in exciting the EELR and bubble given the long-term variability and potential accretion state changes. We detect broad-band (0.3–8 keV) X-ray emission in the near-nuclear regions, coincident with the [O iii] bubble, as well as diffuse soft X-ray emission coincident with the EELR. The soft nuclear (0.5–1.5 keV) emission is spatially extended and the spectra are consistent with two apec thermal populations (∼0.80 and ∼0.10 keV). We find a bubble age >2.2 Myr, suggesting formation before the current variability. We find evidence for efficient feedback with $P_{\textrm {kin}}/L_{\textrm {bol}}\sim 0.8~{{\ \rm per\ cent}}$, which may be overestimated given the recent Lbol variation. [O iii] kinematics show a 300 km s−1 high-ionization velocity consistent with disturbed rotation or potentially the line-of-sight component of a ∼780 km s−1 thermal X-ray outflow capable of driving strong shocks to photoionize the precursor material. We explore possibilities to explain the overall jet, radio lobe and EELR misalignment including evidence for a double supermassive black hole which could support a complex misaligned system.
-
We report the detection of CO emission in the recently discovered multiphase isolated gas cloud in the nearby galaxy cluster Abell 1367. The cloud is located about 800 kpc in projection from the center of the cluster and at a projected distance of > 80 kpc from any galaxy. It is the first and the only known isolated “intra-cluster” cloud detected in X-ray, H α , and CO emission. We found a total of about 2.2 × 10 8 M ⊙ of H 2 with the IRAM 30-m telescope in two regions, one associated with the peak of H α emission and another with the peak of X-ray emission surrounded by weak H α filaments. The velocity of the molecular gas is offset from the underlying H α emission by > 100 km s −1 in the region where the X-ray peaks. The molecular gas may account for about 10% of the total cloud’s mass, which is dominated by the hot X-ray component. The previously measured upper limit on the star formation rate in the cloud indicates that the molecular component is in a non-star-forming state, possibly due to a combination of low density of the gas and the observed level of velocity dispersion. The presence of the three gas phases associated with the cloud suggests that gas phase mixing with the surrounding intra-cluster medium is taking place. The possible origin of the orphan cloud is a late evolutionary stage of a ram pressure stripping event. In contrast, the nearby ram pressure stripped galaxy 2MASX J11443212+2006238 is in an early phase of stripping and we detected about 2.4 × 10 9 M ⊙ of H 2 in its main body.more » « less
-
Abstract J1044+0353 is considered a local analog of the young galaxies that ionized the intergalactic medium at high redshift due to its low mass, low metallicity, high specific star formation rate, and strong high-ionization emission lines. We use integral field spectroscopy to trace the propagation of the starburst across this small galaxy using Balmer emission- and absorption-line equivalent widths and find a poststarburst population (∼15–20 Myr) roughly 1 kpc east of the much younger, compact starburst (∼3–4 Myr). Using the direct electron temperature method to map the O/H abundance ratio, we find similar metallicities (1–3
σ ) between the starburst and poststarburst regions but with a significant dispersion of about 0.3 dex within the latter. We also map the Doppler shift and width of the strong emission lines. Over scales several times the size of the galaxy, we discover a velocity gradient parallel to the galaxy’s minor axis. The steepest gradients (∼30 km s−1kpc−1) appear to emanate from the oldest stellar association. We identify the velocity gradient as an outflow viewed edge on based on the increased line width and skew in a biconical region. We discuss how this outflow and the gas inflow necessary to trigger the starburst affect the chemical evolution of J1044+0353. We conclude that the stellar associations driving the galactic outflow are spatially offset from the youngest association, and a chemical evolution model with a metal-enriched wind requires a more realistic inflow rate than a homogeneous chemical evolution model.