skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cooperation among Tumor Cell Subpopulations Leads to Intratumor Heterogeneity
Heterogeneity is a hallmark of all cancers. Tumor heterogeneity is found at different levels — interpatient, intrapatient, and intratumor heterogeneity. All of them pose challenges for clinical treatments. The latter two scenarios can also increase the risk of developing drug resistance. Although the existence of tumor heterogeneity has been known for two centuries, a clear understanding of its origin is still elusive, especially at the level of intratumor heterogeneity (ITH). The coexistence of different subpopulations within a single tumor has been shown to play crucial roles during all stages of carcinogenesis. Here, using concepts from evolutionary game theory and public goods game, often invoked in the context of the tragedy of commons, we explore how the interactions among subclone populations influence the establishment of ITH. By using an evolutionary model, which unifies several experimental results in distinct cancer types, we develop quantitative theoretical models for explaining data from in vitro experiments involving pancreatic cancer as well as in vivo data in glioblastoma multiforme. Such physical and mathematical models complement experimental studies, and could optimistically provide new ideas for the design of efficacious therapies for cancer patients.  more » « less
Award ID(s):
1708128
PAR ID:
10282971
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Biophysical Reviews and Letters
Volume:
15
Issue:
02
ISSN:
1793-0480
Page Range / eLocation ID:
99 to 119
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Collective cell movement, characterized by multiple cells that are in contact for substantial periods of time and undergo correlated motion, plays a central role in cancer and embryogenesis. Recent imaging experiments have provided time-dependent traces of individual cells, thus providing an unprecedented picture of tumor spheroid growth. By using simulations of a minimal cell model, we analyze the experimental data that map the movement of cells in a fibrosarcoma tumor spheroid embedded in a collagen matrix. Both simulations and experiments show that cells in the core of the spheroid exhibit subdiffusive glassy dynamics (mean square displacement, Δ( t ) ≈ t α with α < 1), whereas cells in the periphery exhibit superdiffusive motion, Δ( t ) ≈ t α with α > 1. The motion of most of the cells near the periphery is highly persistent and correlated directional motion due to cell doubling and apoptosis rates, thus explaining the observed superdiffusive behavior. The α values for cells in the core and periphery, extracted from simulations and experiments, are in near quantitative agreement with each other, which is surprising given that no parameter in the model was used to fit the measurements. The qualitatively different dynamics of cells in the core and periphery is captured by the fourth order susceptibility, introduced to characterize metastable states in glass forming systems. Analyses of the velocity autocorrelation of individual cells show remarkable spatial heterogeneity with no two cells exhibiting similar behavior. The prediction that α should depend on the location of the cells in the tumor is amenable to experimental testing. The highly heterogeneous dynamics of cells in the tumor spheroid provides a plausible mechanism for the origin of intratumor heterogeneity. 
    more » « less
  2. null (Ed.)
    The burden of cancer continues to increase in society and negatively impacts the lives of numerous patients. Due to the high cost of current treatment strategies, there is a crucial unmet need to develop inexpensive preclinical platforms to accelerate the process of anti-cancer drug discovery to improve outcomes in cancer patients, most especially in female patients. Many current methods employ expensive animal models which not only present ethical concerns but also do not often accurately predict human physiology and the outcomes of anti-cancer drug responsiveness. Conventional treatment approaches for cancer generally include systemic therapy after a surgical procedure. Although this treatment technique is effective, the outcome is not always positive due to various complex factors such as intratumor heterogeneity and confounding factors within the tumor microenvironment (TME). Patients who develop metastatic disease still have poor prognosis. To that end, recent efforts have attempted to use 3D microengineered platforms to enhance the predictive power and efficacy of anti-cancer drug screening, ultimately to develop personalized therapies. Fascinating features of microengineered assays, such as microfluidics, have led to the advancement in the development of the tumor-on-chip technology platforms, which have shown tremendous potential for meaningful and physiologically relevant anti-cancer drug discovery and screening. Three dimensional microscale models provide unprecedented ability to unveil the biological complexities of cancer and shed light into the mechanism of anti-cancer drug resistance in a timely and resource efficient manner. In this review, we discuss recent advances in the development of microengineered tumor models for anti-cancer drug discovery and screening in female-related cancers. We specifically focus on female-related cancers to draw attention to the various approaches being taken to improve the survival rate of women diagnosed with cancers caused by sex disparities. We also briefly discuss other cancer types like colon adenocarcinomas and glioblastoma due to their high rate of occurrence in females, as well as the high likelihood of sex-biased mutations which complicate current treatment strategies for women. We highlight recent advances in the development of 3D microscale platforms including 3D tumor spheroids, microfluidic platforms as well as bioprinted models, and discuss how they have been utilized to address major challenges in the process of drug discovery, such as chemoresistance, intratumor heterogeneity, drug toxicity, etc. We also present the potential of these platform technologies for use in high-throughput drug screening approaches as a replacements of conventional assays. Within each section, we will provide our perspectives on advantages of the discussed platform technologies. 
    more » « less
  3. null (Ed.)
    Abstract Background Cancer progression reconstruction is an important development stemming from the phylogenetics field. In this context, the reconstruction of the phylogeny representing the evolutionary history presents some peculiar aspects that depend on the technology used to obtain the data to analyze: Single Cell DNA Sequencing data have great specificity, but are affected by moderate false negative and missing value rates. Moreover, there has been some recent evidence of back mutations in cancer: this phenomenon is currently widely ignored. Results We present a new tool, , that reconstructs a tumor phylogeny from Single Cell Sequencing data, allowing each mutation to be lost at most a fixed number of times. The General Parsimony Phylogeny from Single cell () tool is open source and available at https://github.com/AlgoLab/gpps . Conclusions provides new insights to the analysis of intra-tumor heterogeneity by proposing a new progression model to the field of cancer phylogeny reconstruction on Single Cell data. 
    more » « less
  4. Abstract Motivation There has been recent increased interest in using algorithmic methods to infer the evolutionary tree underlying the developmental history of a tumor. Quantitative measures that compare such trees are vital to a number of different applications including benchmarking tree inference methods and evaluating common inheritance patterns across patients. However, few appropriate distance measures exist, and those that do have low resolution for differentiating trees or do not fully account for the complex relationship between tree topology and the inheritance of the mutations labeling that topology. Results Here we present two novel distance measures, Common Ancestor Set distance (CASet) and Distinctly Inherited Set Comparison distance (DISC), that are specifically designed to account for the subclonal mutation inheritance patterns characteristic of tumor evolutionary trees. We apply CASet and DISC to multiple simulated datasets and two breast cancer datasets and show that our distance measures allow for more nuanced and accurate delineation between tumor evolutionary trees than existing distance measures. Availability and implementation Implementations of CASet and DISC are freely available at: https://bitbucket.org/oesperlab/stereodist. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  5. Abstract Spatial transcriptomics data play a crucial role in cancer research, providing a nuanced understanding of the spatial organization of gene expression within tumor tissues. Unraveling the spatial dynamics of gene expression can unveil key insights into tumor heterogeneity and aid in identifying potential therapeutic targets. However, in many large-scale cancer studies, spatial transcriptomics data are limited, with bulk RNA-seq and corresponding Whole Slide Image (WSI) data being more common (e.g. TCGA project). To address this gap, there is a critical need to develop methodologies that can estimate gene expression at near-cell (spot) level resolution from existing WSI and bulk RNA-seq data. This approach is essential for reanalyzing expansive cohort studies and uncovering novel biomarkers that have been overlooked in the initial assessments. In this study, we present STGAT (Spatial Transcriptomics Graph Attention Network), a novel approach leveraging Graph Attention Networks (GAT) to discern spatial dependencies among spots. Trained on spatial transcriptomics data, STGAT is designed to estimate gene expression profiles at spot-level resolution and predict whether each spot represents tumor or non-tumor tissue, especially in patient samples where only WSI and bulk RNA-seq data are available. Comprehensive tests on two breast cancer spatial transcriptomics datasets demonstrated that STGAT outperformed existing methods in accurately predicting gene expression. Further analyses using the TCGA breast cancer dataset revealed that gene expression estimated from tumor-only spots (predicted by STGAT) provides more accurate molecular signatures for breast cancer sub-type and tumor stage prediction, and also leading to improved patient survival and disease-free analysis. Availability: Code is available at https://github.com/compbiolabucf/STGAT. 
    more » « less